Formelsammlung

Geometrische Optik

(Vakuum-)Lichtgeschwindigkeit (Definition) c := 299'792'458 m/s

 $n_M := \frac{c}{c_M}$ Brechzahl (Definition)

 $\theta_1{}'=\theta_1$ Reflexionsgesetz

Brechungsgesetz (Snellius) $n_1 \cdot \sin(\theta_1) = n_2 \cdot \sin(\theta_2)$

 $f = \frac{r}{2}$ (Vorzeichen-Konvention Tipler/Mosca) Brennweite sphärischer Spiegel

 $\frac{1}{g} + \frac{1}{b} = \frac{1}{f}$ Abbildungsgleichung für sphärische Spiegel und Linsen

 $V := \frac{B}{G} = -\frac{b}{g}$ Lateralvergrösserung für sphärische Spiegel und Linsen

 $\frac{n_1}{g}+\frac{n_2}{b}=\frac{n_2\cdot n_1}{r}$ Abbildungsgleichung für sphärische Oberflächen

 $V := \frac{B}{G} = -\frac{n_1 b}{n_2 g}$ Lateralvergrösserung für sphärische Oberflächen

 $\frac{1}{f} = \left(\frac{n_{Linse}}{n_{Umgebung}} - 1\right) \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$ Linsenmachergleichung für dünne sphärische Linsen

 $D := \frac{1}{\epsilon}$ Brechkraft einer Linse (Definition)

Thermodynamik

 $I_{S1} + I_{S2} + ... + \Pi_S = \dot{S}$ Entropiebilanz

0 °C := 273.15 K Temperatur-Nullpunkt Celsius-Skala

 $I_W = T\!\cdot\! I_S$ Entropiestromstärke ↔ Energiestromstärke

 $P_{th} = \Delta T \!\cdot\! I_S$ Thermische Prozessleistung

 $\eta = \frac{\text{"Nutzen"}}{\text{"Aufwand"}}$ Wirkungsgrad (allgemein)

 $\eta = 1$ - $\frac{T_{tief}}{T_{hoch}}$ Wirkungsgrad (Ideale thermische Maschine)

 $I_S = \sigma_s \frac{A}{4} \Delta T$ Entropieleitung

 $N_A := 6.02214073 \cdot 10^{23} \ mol^{\text{-}1}$ Avogadro-Konstante

 $M = \frac{m}{n}$ Molmasse

Erwärmbarkeit

 $dT = \alpha \frac{1}{n} dS$ $\Delta T = \alpha \frac{1}{n} \Delta S \quad \text{(Ann.: } \alpha \text{ konst.)}$

 $dW = c \cdot m \cdot dT$

 $\Delta W = c \cdot m \cdot \Delta T$ (Ann.: c konst.)

 $p = \frac{F_{\perp}}{A}$ Druck

Schweredruck (Flüssigkeit) $p_S = \rho \cdot g \cdot h$

 $p = p_0 e^{-\frac{\rho_0}{p_0}gh}$ (Ann.: isotherme Atmosphäre) Barometrische Höhenformel

Längenausdehnung	$\frac{\Delta l}{l} = \alpha \cdot \Delta T$	
Volumenausdehnung	$\frac{\Delta V}{V} = \beta \cdot \Delta T$	
-	$\beta \approx 3\alpha$	
Ideales Gas: Allgemeine Zustandsgleichung	$\mathbf{p} \cdot \mathbf{V} = \mathbf{n} \cdot \mathbf{R} \cdot \mathbf{T}$	
Ideales Gas: Dalton-Gesetz (Partialdruck)	$p = \sum_{i} p_{i}$	
Ideales Gas: Druck ↔ Mittlere kinetische Energie	$p = \frac{2}{3} \frac{N}{V} \overline{W_{kin}}$	
Ideales Gas: Temperatur \leftrightarrow Mittlere kinetische Energie	$\overline{W_{kin}} = \frac{3}{2}k_BT$	
Gleichverteilungssatz	$\overline{W_{kin}}$ pro Freiheitsgrad = $\frac{1}{2}k_BT$ pro Teilchen	
	$\overline{W_{kin}}$ pro Freiheitsgrad = $\frac{1}{2}$ RT pro Mol	
Maxwell-Boltzmann-Verteilung	$f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2k_BT}\right)^{\frac{3}{2}} v^2 e^{-\frac{mv^2}{2k_BT}}$	
Reales Gas: Van-der-Waals'sche Zustandsgleichung	$\left(p + a\left(\frac{n}{V}\right)^2\right) (V - bn) = n \cdot R \cdot T$	
Wärmezufuhr ↔ Temperaturänderung	$\Delta Q = c \cdot m \cdot \Delta T$ $\Delta Q = C \cdot n \cdot \Delta T$	
Schmelzwärme, Verdampfungswärme	$Q_s = m \cdot s$ $Q_v = m \cdot v$	
Erster Hauptsatz	dU = dQ + dW $\Delta U = \Delta Q + \Delta W$	
Gleichverteilungssatz	Mittlere Energie pro Freiheitsgrad und Teilchen $= \frac{1}{2} k_B T$	
	Mittlere Energie pro Freiheitsgrad und Mol $=\frac{1}{2}RT$	
Innere Energie (Ideales Gas)	$U = f \cdot \frac{1}{2} \cdot n \cdot R \cdot T$ $dU = n \cdot C_V \cdot dT$	
Molare Wärmekapazität		
Festkörper	$C = 3 \cdot R$	
Ideales Gas	$C_{V} = \frac{f}{2} \cdot R$ $C_{p} = \left(\frac{f}{2} + 1\right) \cdot R$ $C_{p} - C_{V} = R$	
Volumenarbeit	$dW = - p \cdot dV$	
Adiabatenkoeffizient	$\kappa \coloneqq \frac{C_p}{C_V} = \frac{f+2}{f}$	
Adiabatische Zustandsänderung	$p \cdot V^{\kappa}$ konstant $T \cdot V^{\kappa-1}$ konstant $\frac{T^{\kappa}}{p^{\kappa-1}}$ konstant	

Energiebilanz	Thermische Maschine	($Q_{\rm w} = \Delta W + Q_{\rm k}$

Wirkungsgrad/Leistungsziffer

Wärme-Kraft-Maschine
$$\eta = \frac{\Delta W}{Q_w} = 1 - \frac{Q_k}{Q_w}$$

Wärmemaschine
$$\epsilon = \frac{Q_w}{\Delta W} = \frac{1}{1 - \frac{Q_k}{Q_w}}$$

Kältemaschine
$$\epsilon = \frac{Q_k}{\Delta W} = \frac{1}{\frac{Q_W}{Q_k} - 1}$$

Carnot-Wirkungsgrad/Leistungsziffer

Wärme-Kraft-Maschine
$$\eta = \frac{\Delta W}{Q_w} = 1 - \frac{T_k}{T_w}$$

Wärmemaschine
$$\epsilon = \frac{Q_w}{\Delta W} = \frac{1}{1 - \frac{T_k}{T_{wv}}}$$

Kältemaschine
$$\epsilon = \frac{Q_k}{\Delta W} = \frac{1}{\frac{T_W}{T_k} - 1}$$

$$\label{eq:Warmeleitung} I_{\text{Wärme}} := \frac{\Delta Q}{\Delta t} = k \cdot A \cdot \frac{\Delta T}{\Delta x}$$

Wärmewiderstand

Allgemein
$$R_{\text{W\"{a}rme}} := \frac{\Delta T}{I_{\text{W\"{a}rme}}}$$

Serieschaltung
$$R = R_1 + R_2 + ...$$

Parallelschaltung
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$

Wärmedurchgangskoeffizient ("U-Wert")
$$U \coloneqq \frac{I_{\text{Wärme}}}{A \cdot \Delta T}$$

Stefan-Boltzmann-Gesetz (Wärmestrahlung)
$$P_e = e \cdot \sigma \cdot A \cdot T^4$$

Wien'sches Verschiebungsgesetz
$$\lambda_{max} = \frac{2.898 \text{ mm}}{T/K}$$