Increasing/decreasing, concavity

Ex.: $\quad f(x)=x^{3}-7 x-6$

$f^{\prime}(x)=3 x^{2}-7$

$f^{\prime \prime}(x)=6 x$

Increasing/decreasing

If the first derivative of the function f is positive at $x=x_{0}$, i.e. $f^{\prime}\left(x_{0}\right)>0$, f is increasing at $x=x_{0}$.
If the first derivative of the function f is negative at $x=x_{0}$, i.e. $f^{\prime}\left(x_{0}\right)<0, f$ is decreasing at $x=x_{0}$.

Concavity

If the second derivative of the function f is positive at $x=x_{0}$, i.e. $f "\left(x_{0}\right)>0$, the graph of f is concave up ("left-hand bend") at $\mathrm{x}=\mathrm{x}_{0}$.
If the second derivative of the function f is negative at $\mathrm{x}=\mathrm{x}_{0}$, i.e. f " $\left(\mathrm{x}_{0}\right)<0$, the graph of f is concave down ("right-hand bend") at $\mathrm{x}=\mathrm{x}_{0}$.

Local maxima/minima

The function f has a local maximum at $\mathrm{x}=\mathrm{x}_{0}$ if the tangent to the graph of f at $\mathrm{x}=\mathrm{x}_{0}$ is horizontal and if the graph of f is concave down at $\mathrm{x}=\mathrm{x}_{0}$.
This applies if $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=0$ (necessary) and $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{0}\right)<0$ (sufficient).
The function f has a local minimum at $x=x_{0}$ if the tangent to the graph of f at $x=x_{0}$ is horizontal and if the graph of f is concave up at $\mathrm{x}=\mathrm{x}_{0}$.
This applies if $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=0$ (necessary) and $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{0}\right)>0$ (sufficient).

Global maximum/minimum

The global maximum/minimum of a continuous function f is either a local maximum/minimum or the value of f at one of the endpoints of the domain.

Points of inflection

The function f has a point of inflection at $x=x_{0}$ if the graph of f changes its concavity from concave up to concave down (or vice versa) at $\mathrm{x}=\mathrm{x}_{0}$.
This applies if f " $\left(\mathrm{x}_{0}\right)=0$ (necessary) and f " $"\left(\mathrm{x}_{0}\right) \neq 0$ (sufficient).

Ex.: $\quad f(x)=x^{3}-7 x-6$ (see page 1$) \quad \Rightarrow f^{\prime}(x)=3 x^{2}-7$

$$
\Rightarrow \mathrm{f}^{\prime \prime}(\mathrm{x})=6 \mathrm{x}
$$

$$
\Rightarrow \mathrm{f}^{\prime \prime \prime}(\mathrm{x})=6
$$

Local maxima/minima

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=0 \text { at } \mathrm{x}_{1}=\sqrt{\frac{7}{3}}=1.52 \ldots \text { and } \mathrm{x}_{2}=-\sqrt{\frac{7}{3}}=-1.52 \ldots \\
& \mathrm{f}^{\prime \prime}\left(\mathrm{x}_{1}\right)=6 \cdot \sqrt{\frac{7}{3}}=9.16 \ldots>0 \quad \Rightarrow \text { local minimum at } \mathrm{x}_{1}=\sqrt{\frac{7}{3}} \\
& \mathrm{f}^{\prime \prime}\left(\mathrm{x}_{2}\right)=-6 \cdot \sqrt{\frac{7}{3}}=-9.16 \ldots<0 \quad \Rightarrow \text { local maximum at } \mathrm{x}_{2}=-\sqrt{\frac{7}{3}}
\end{aligned}
$$

Global maximum/minimum

$$
\begin{array}{ll}
\text { Ex.: } \quad \mathrm{D}=[0,4] & \Rightarrow \text { global maximum at } \mathrm{x}=4 \text { (endpoint of domain) } \\
& \Rightarrow \text { global minimum at } \mathrm{x}=\mathrm{x}_{1}=\sqrt{\frac{7}{3}} \quad \text { (local minimum) } \\
& \\
\text { Ex.: } \quad \mathrm{D}=[-4,3] & \Rightarrow \text { global maximum at } \mathrm{x}=\mathrm{x}_{2}=-\sqrt{\frac{7}{3}} \quad \text { (local maximum) } \\
& \Rightarrow \text { global minimum at } \mathrm{x}=-4 \text { (endpoint of domain) }
\end{array}
$$

Points of inflection

$$
\begin{aligned}
& \mathrm{f}^{\prime \prime}(\mathrm{x})=0 \text { at } \mathrm{x}_{3}=0 \\
& \mathrm{f}^{\prime \prime \prime}\left(\mathrm{x}_{3}\right)=6 \neq 0 \quad \Rightarrow \text { point of inflection at } \mathrm{x}_{3}=0
\end{aligned}
$$

Financial mathematics

Marginal cost / Marginal revenue / Marginal profit function
$=$ first derivative of the cost/revenue/profit function
Ex.: Cost function
\Rightarrow Marginal cost function
$C(x)=\left(2 x^{2}+120\right)$ CHF
Revenue function
\Rightarrow Marginal revenue function
Profit function
\Rightarrow Marginal profit function

$$
\begin{aligned}
& \mathrm{C}^{\prime}(\mathrm{x})=4 \mathrm{x} C H F \\
& \mathrm{R}(\mathrm{x})=\left(-\mathrm{x}^{2}+168 \mathrm{x}\right) \mathrm{CHF} \\
& \mathrm{R}^{\prime}(\mathrm{x})=(-2 \mathrm{x}+168) \mathrm{CHF} \\
& \mathrm{P}^{(x)}=\mathrm{R}(\mathrm{x})-\mathrm{C}(\mathrm{x})=\left(-3 \mathrm{x}^{2}+168 \mathrm{x}-120\right) \mathrm{CHF} \\
& \mathrm{P}^{\prime}(\mathrm{x})=(-6 \mathrm{x}+168) \mathrm{CHF}
\end{aligned}
$$

Average cost / Average revenue / Average profit function

Average cost function / Unit cost function
Ex.: Cost function
\Rightarrow Average cost function
Average revenue function
Average profit function
$\overline{\mathrm{C}}(\mathrm{x}):=\frac{\mathrm{C}(\mathrm{x})}{\mathrm{x}} \quad$ where $\mathrm{C}(\mathrm{x})=$ cost function
$C(x)=\left(3 x^{2}+4 x+2\right)$ CHF
$\overline{\mathrm{C}}(\mathrm{x})=\left(3 \mathrm{x}+4+\frac{2}{\mathrm{x}}\right) \mathrm{CHF}$
$\overline{\mathrm{R}}(\mathrm{x}):=\frac{\mathrm{R}(\mathrm{x})}{\mathrm{x}} \quad$ where $\mathrm{R}(\mathrm{x})=$ revenue function
$\overline{\mathrm{P}}(\mathrm{x}):=\frac{\mathrm{P}(\mathrm{x})}{\mathrm{x}} \quad$ where $\mathrm{P}(\mathrm{x})=$ profit function

