Increasing/decreasing, concavity

 $f'(x) = 3x^2 - 7$

$$f''(x) = 6x$$

Increasing/decreasing

If the first derivative of the function f is positive at $x = x_0$, i.e. $f'(x_0) > 0$, f is increasing at $x = x_0$.

If the first derivative of the function f is negative at $x = x_0$, i.e. $f'(x_0) < 0$, f is decreasing at $x = x_0$.

Concavity

If the **second derivative** of the function f is **positive** at $x = x_0$, i.e. $f''(x_0) > 0$, the graph of f is **concave up** ("left-hand bend") at $x = x_0$.

If the **second derivative** of the function f is **negative** at $x = x_0$, i.e. $f''(x_0) < 0$, the graph of f is **concave down** ("right-hand bend") at $x = x_0$.

Local maxima/minima

The function f has a **local maximum** at $x = x_0$ if the tangent to the graph of f at $x = x_0$ is horizontal and if the graph of f is concave down at $x = x_0$.

This applies if $f'(x_0) = 0$ (necessary) and $f''(x_0) < 0$ (sufficient).

The function f has a **local minimum** at $x = x_0$ if the tangent to the graph of f at $x = x_0$ is horizontal and if the graph of f is concave up at $x = x_0$.

This applies if $f'(x_0) = 0$ (necessary) and $f''(x_0) > 0$ (sufficient).

Global maximum/minimum

The **global maximum/minimum** of a continuous function f is either a local maximum/minimum or the value of f at one of the endpoints of the domain.

Points of inflection

The function f has a **point of inflection** at $x = x_0$ if the graph of f changes its concavity from concave up to concave down (or vice versa) at $x = x_0$.

This applies if $f''(x_0) = 0$ (necessary) and $f'''(x_0) \neq 0$ (sufficient).

Ex.:
$$f(x) = x^3 - 7x - 6$$
 (see page 1) $\Rightarrow f'(x) = 3x^2 - 7$
 $\Rightarrow f''(x) = 6x$
 $\Rightarrow f'''(x) = 6$

Local maxima/minima

$$f'(x) = 0 \text{ at } x_1 = \sqrt{\frac{7}{3}} = 1.52... \text{ and } x_2 = -\sqrt{\frac{7}{3}} = -1.52...$$

$$f''(x_1) = 6 \cdot \sqrt{\frac{7}{3}} = 9.16... > 0 \qquad \Rightarrow \text{ local minimum at } x_1 = \sqrt{\frac{7}{3}}$$

$$f''(x_2) = -6 \cdot \sqrt{\frac{7}{3}} = -9.16... < 0 \qquad \Rightarrow \text{ local maximum at } x_2 = -\sqrt{\frac{7}{3}}$$

Global maximum/minimum

Ex.:
$$D = [0,4]$$
 \Rightarrow global maximum at $x = 4$ (endpoint of domain)

⇒ global minimum at
$$x = x_1 = \sqrt{\frac{7}{3}}$$
 (local minimum)

Ex.:
$$D = [-4,3]$$
 \Rightarrow global maximum at $x = x_2 = -\sqrt{\frac{7}{3}}$ (local maximum)

$$\Rightarrow$$
 global minimum at $x = -4$ (endpoint of domain)

Points of inflection

$$f''(x) = 0$$
 at $x_3 = 0$

$$f'''(x_3) = 6 \neq 0$$
 \Rightarrow point of inflection at $x_3 = 0$

Financial mathematics

Marginal cost / Marginal revenue / Marginal profit function

= first derivative of the cost/revenue/profit function

Ex.: Cost function
$$C(x) = (2x^2 + 120) CHF$$

$$\Rightarrow$$
 Marginal cost function $C'(x) = 4x$ CHF

Revenue function
$$R(x) = (-x^2 + 168x) \text{ CHF}$$

 \Rightarrow Marginal revenue function $R'(x) = (-2x + 168) \text{ CHF}$

Profit function
$$P(x) = R(x) - C(x) = (-3x^2 + 168x - 120) \text{ CHF}$$

$$\Rightarrow$$
 Marginal profit function P'(x) = (-6x + 168) CHF

Average cost / Average revenue / Average profit function

Average cost function / Unit cost function
$$\overline{C}(x) := \frac{C(x)}{x}$$
 where $C(x) = \cos t$ function

Ex.: Cost function
$$C(x) = (3x^2 + 4x + 2) \text{ CHF}$$

 \Rightarrow Average cost function $\overline{C}(x) = \left(3x + 4 + \frac{2}{x}\right) \text{ CHF}$

Average revenue function
$$\overline{R}(x) := \frac{R(x)}{x}$$
 where $R(x)$ = revenue function

Average profit function
$$\bar{P}(x) := \frac{P(x)}{x}$$
 where $P(x) = \text{profit function}$