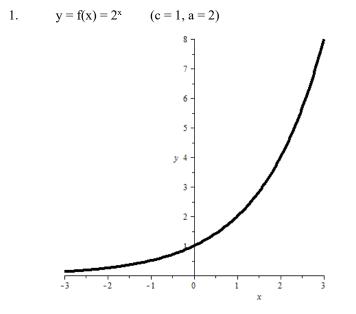
Exponential function

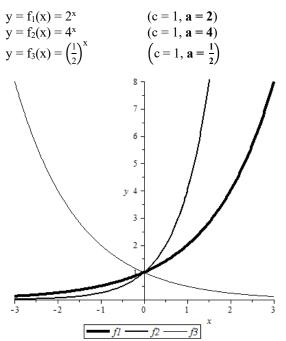
Definition

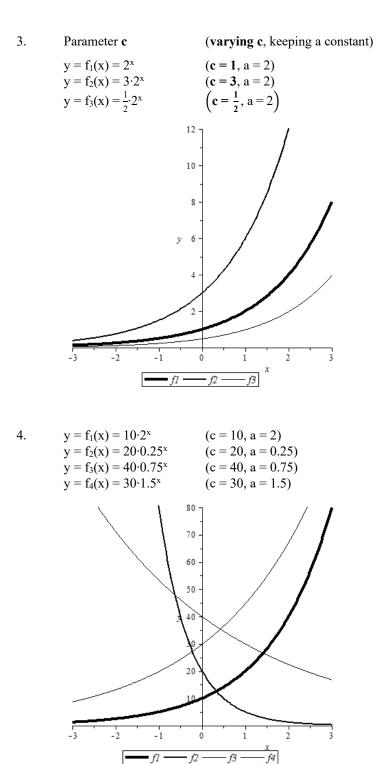
f:	$D \to \mathbb{R}$	$(D\subseteq\mathbb{R})$
	$x \mapsto y = f(x) = c \cdot a^x$	$(a \in \mathbb{R}^+ \setminus \{1\}, c \in \mathbb{R} \setminus \{0\})$
	a > 1: exponential growth	
	a < 1: exponential decay	

Graph



2. Parameter **a** (varying **a**, keeping c constant)





Examples

1. Compound interest (exponential **growth**)

$C_n = C_0 \cdot q^n$	$\begin{array}{l} C_0 = \mbox{initial capital} \\ C_n = \mbox{capital after n compounding periods} \\ n = \mbox{number of compounding periods (often: 1 compounding period = 1 year)} \\ q = \mbox{interest/growth factor} = $1 + r$ ($r > 0, $q > 1$) \\ r = \mbox{interest rate per compounding period} \end{array}$
	Ex.: $C_0 := 1000 \text{ CHF}, r := 2\% = 0.02 \implies q = 1.02 \implies C_n = 1000 \cdot 1.02^n \text{ CHF}$

2. Consumer price index (exponential **decay**)

$$\begin{split} P(t) &= P_0 \cdot q^t \\ P_0 &= \text{initial price / initial purchasing power} \\ P(t) &= \text{price / purchasing power at time t (often: t = number of years)} \\ q &= \text{decay factor} = 1 + r \quad (r < 0, q < 1) \\ \text{Ex.:} \quad P_0 &:= 100 \text{ CHF}, r := -3\% = -0.03 \implies q = 0.97 \implies P(t) = 100 \cdot 0.97^t \text{ CHF} \end{split}$$