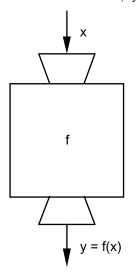
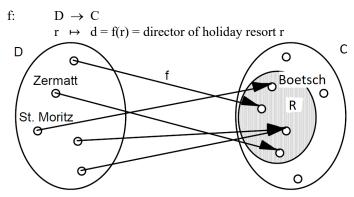

Definition and examples

Def.: A function f is a rule that assigns to each element x in a set D exactly one element y in a set C.



The function f **maps** the set D onto the set C.


 $\begin{array}{rl} f: & D \to C \\ & x \mapsto y = f(x) \end{array} ("f \ of \ x") \end{array}$

The set D is the domain, the set C is the codomain, and the set R is the range of the function f.

The element y is the **image** of the element x. or (if D and C are number sets): y is the **value** of f at x.

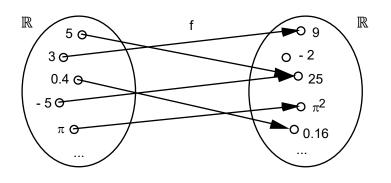
Ex.: 1. D = set of all Swiss holiday resortsC = set of all human beings

- 2. D = set of all countries of the world C = set of all cities of the world
 - f: $D \rightarrow C$ a $\mapsto b = f(a) = capital of country a$

3. Cable car company

 $\begin{array}{ll} D = \mathbb{N} & (= \text{ set of natural numbers}) \\ C = \mathbb{R} & (= \text{ set of real numbers}) \\ f: & \mathbb{N} \rightarrow \mathbb{R} \\ & n & \mapsto & r = f(n) = \text{ revenue (in CHF) when n tickets are sold} \end{array}$

 $\mathbf{D}=\mathbb{N}$ $\mathbf{C}=\mathbb{Z}$ f: $\mathbb{N} \to \ \mathbb{Z}$ $n \mapsto y = f(n) = n - 4$ f \mathbb{N} - 3 Ð 1 O 0 20 ю-1 3 0-2 4 0 **ю**1 5 O - 2 60


5.
$$D = C = \mathbb{R}$$

4.

p: $\mathbb{R} \to \mathbb{R}$ $x \mapsto y = p(x) = \frac{x^3 \cdot 3}{2x^2 + 1}$ \mathbb{Z}

Representation of a function

Arrow diagram



Table of values

X	У
1	1
3	9
5	25
- 5	25
0.4	0.16

Equation

Graph

