Review exercises 2

Differential calculus, integral calculus

Problems

R2.1 Decide whether the statements below are true or false:
a) "The derivative (derived function) of a function is a function."
b) "The derivative (rate of change) of a function at a particular position is a number."
c) "The function f has a local maximum at $x=x_{1}$ if $f^{\prime}\left(x_{1}\right)=0$ and $f^{\prime \prime}\left(x_{1}\right)>0$."
d) "If f " $\left(\mathrm{x}_{2}\right)=0$ and $\mathrm{f}^{\prime \prime \prime}\left(\mathrm{x}_{2}\right)<0$, then the function f has a point of inflection at $\mathrm{x}=\mathrm{x}_{2}$."
e) \quad IIf $g^{\prime}=f$, then g is an antiderivative of $f . "$
f) "f with $f(x)=2 x+20$ is an antiderivative of g with $g(x)=x^{2}$."
g) "f with $\mathrm{f}(\mathrm{x})=3 \mathrm{x}$ has infinitely many antiderivatives."
h) "The indefinite integral of a function is a set of functions."

R2.2 Determine the value $f\left(x_{0}\right)$, the first derivative $f^{\prime}\left(x_{0}\right)$, and the second derivative $f^{\prime \prime}\left(x_{0}\right)$ of the function f at the position x_{0} :
a) $\quad f(x)=4 x^{2}\left(x^{2}-1\right)$

$$
\mathrm{x}_{0}=-1
$$

b) $\quad f(x)=\left(-3 x^{2}+2 x-1\right) \cdot e^{x}$

$$
\mathrm{x}_{0}=-2
$$

c) $\quad f(x)=\left(x^{2}+2\right) \cdot e^{-3 x}$

$$
\mathrm{x}_{0}=-\frac{1}{3}
$$

R2.3 For the given cost function $C(x)$ and revenue function $R(x)$ determine ...
i) ... the marginal cost function $\mathrm{C}^{\prime}(\mathrm{x})$.
ii) ... the marginal revenue function $\mathrm{R}^{\prime}(\mathrm{x})$.
iii) ... the marginal profit function $\mathrm{P}^{\prime}(\mathrm{x})$.
a) $\quad C(x)=(40 x+200)$ CHF $\quad R(x)=60 x$ CHF
b) $\quad C(x)=\left(5 x^{2}+20 x+100\right)$ CHF
$R(x)=\left(-2 x^{2}+100 x\right)$ CHF
c) $\quad \mathrm{C}(\mathrm{x})=\left(20 \mathrm{x}^{2}+50+3 \mathrm{e}^{4 \mathrm{x}}\right) \mathrm{CHF}$
$R(x)=\left(200 x-e^{-4 x^{2}}\right) C H F$

R2.4 For the function f, determine ...
i) $\quad .$. the local maxima and minima.
ii) \quad.. the points of inflection.
a) $\quad f(x)=2 x^{3}-9 x^{2}+12 x-1$
b) $\quad f(x)$ as in R2.2 a)

R2.5 The total revenue function for a commodity is given by

$$
R(x)=\left(-0.01 x^{2}+36 x\right) C H F
$$

Determine the maximum revenue if production is limited to at most 1500 units.

R2.6 If the total cost function for a product is

$$
C(x)=\left(x^{2}+100\right) \mathrm{CHF}
$$

producing how many units x will result in a minimum average cost? Determine the minimum average cost.

R2.7 A firm can produce 1000 units per month only. The monthly total cost is given by

$$
C(x)=(200 x+300) C H F
$$

where x is the number produced. If the total revenue is given by

$$
R(x)=\left(-\frac{1}{100} x^{2}+250 x\right) \text { CHF }
$$

how many items should the firm produce for a maximum profit? Determine the maximum profit.

R2.8 Determine the indefinite integrals below:
a) $\int\left(x^{4}-3 x^{3}-6\right) d x$
b) $\quad \int\left(\frac{1}{2} x^{6}-\frac{2}{3 x^{4}}\right) d x$

R2.9 The equation of the third derivative f "' of a function f is given as follows:

$$
f^{\prime \prime \prime}(\mathrm{x})=3 \mathrm{x}+1
$$

Determine the equation of the function f such that $f^{\prime \prime}(0)=0, f^{\prime}(0)=1, f(0)=2$

R2.10 If the marginal cost for producing a product is $C^{\prime}(x)=(5 x+10)$ CHF, with a fixed cost of 800 CHF, what will be the cost of producing 20 units?

R2.11 A certain firm's marginal cost $\mathrm{C}^{\prime}(\mathrm{x})$ and the derivative of the average revenue $\overline{\mathrm{R}}^{\prime}(\mathrm{x})$ are given as follows:

$$
\begin{aligned}
& \mathrm{C}^{\prime}(\mathrm{x})=(6 \mathrm{x}+60) \mathrm{CHF} \\
& \overline{\mathrm{R}}^{\prime}(\mathrm{x})=-1 \mathrm{CHF}
\end{aligned}
$$

The total cost and revenue of the production of 10 items are 1000 CHF and 1700 CHF, respectively.
How many units will result in a maximum profit? Determine the maximum profit.

R2.12 The supply function for a product is

$$
\mathrm{p}=\mathrm{f}_{\mathrm{s}}(\mathrm{x})=(4 \mathrm{x}+4) \mathrm{CHF}
$$

and the demand function is

$$
\mathrm{p}=\mathrm{f}_{\mathrm{d}}(\mathrm{x})=\left(-\mathrm{x}^{2}+49\right) \text { CHF }
$$

Determine the equilibrium point and both the consumer's and the producer's surplus there.

R2.13 (see next page)

R2.13 The supply function for a product is

$$
\mathrm{p}=\mathrm{f}_{\mathrm{s}}(\mathrm{x})=\left(\mathrm{ax}^{2}-\frac{6}{5} \mathrm{x}+2\right) \mathrm{CHF}
$$

and the demand function is

$$
\mathrm{p}=\mathrm{f}_{\mathrm{d}}(\mathrm{x})=\left(-\mathrm{bx}^{2}+110\right) \mathrm{CHF}
$$

with unknown parameters a and b. The equilibrium price is 10 CHF , and the producer's surplus is 73.33 CHF (rounded).

Determine the two unknown parameters a and b.
Hint:

- Use the unrounded value $\left(73+\frac{1}{3}\right) \mathrm{CHF}=\frac{220}{3} \mathrm{CHF}$ for the producer's surplus.

