Exercises 17 Definite integral
 Definite integral, area under a curve, consumer's/producer's surplus

Objectives

- be able to apply the fundamental theorem of calculus.
- be able to determine a definite integral of a constant, basic power, and basic exponential function.
- be able to determine the area between the graph of a basic power function and the abscissa.
- be able to determine a consumer's and a producer's surplus if the demand and supply functions are basic power functions.

Problems

17.1 Calculate the definite integrals below:
a) $\quad \int_{3}^{4}(2 x-5) d x$
b) $\quad \int_{0}^{1}\left(x^{3}+2 x\right) d x$
c) $\quad \int_{-5}^{-3}\left(\frac{1}{2} x^{2}-4\right) d x$
d) $\quad \int_{2}^{4}\left(x^{3}-\frac{1}{2} x^{2}+3 x-4\right) d x$
e) $\quad \int_{-2}^{2}\left(-\frac{1}{8} x^{4}+2 x^{2}\right) d x$
f) $\quad \int_{-1}^{1} e^{x} d x$
g) $\quad \int_{0}^{1} e^{2 x} d x$
h) $\quad \int_{-1}^{1} e^{-3 x} d x$
17.2 Determine the area between the graph of the function f and the x-axis on the interval where the graph of f is above the x-axis, i.e. where $f(x) \geq 0$.
a) $f(x)=-x^{2}+1$
b) $\quad f(x)=x^{3}-x^{2}-2 x$

Hints:

- First, determine the positions x where the graph of f touches or intersects the x-axis, i.e where $f(x)=0$
- Then, determine the interval on which the graph of f is above the x-axis, i.e. where $f(x) \geq 0$
17.3 The demand function for a product is $p=f_{d}(x)=\left(100-4 x^{2}\right)$ CHF.

If the equilibrium quantity is 4 units, what is the consumer's surplus?
17.4 The demand function for a product is $p=f_{d}(x)=\left(34-x^{2}\right)$ CHF. If the equilibrium price is 9 CHF , what is the consumer's surplus?
17.5 Suppose that the supply function for a good is $p=f_{s}(x)=\left(4 x^{2}+2 x+2\right)$ CHF. If the equilibrium price is 422 CHF , what is the producer's surplus?
17.6 The the supply function f_{s} and the demand function f_{d} for a certain product are given as follows:

$$
\begin{aligned}
& p=f_{s}(x)=\left(x^{2}+4 x+11\right) C H F \\
& p=f_{d}(x)=\left(81-x^{2}\right) C H F
\end{aligned}
$$

Determine ...
a) \quad. the equilibrium point, i.e. the equilibrium quantitiy and the equilibrium price.
b) $\quad .$. the consumer's surplus at market equilibrium.
c) \ldots the producer's surplus at market equilibrium.
17.7 (see next page)
17.7 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a) The definite integral of a function is a ...

... real number.
... function.
... set of functions.
... graph.
b) $\quad \int_{a}^{b} f(x) d x \ldots$
$\ldots=f(b)-f(a)$
$\ldots=F(a)-F(b)$ where F is an antiderivative of f.
... is equal to the area between the graph of f and the x-axis in the interval $[a, b]$ if $f(x) \geq 0$ for all $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$

- ... cannot be calculated unless all antiderivatives of f are known.
c) The consumer's surplus is an area between ...
Γ
Γ
Γ
... the graphs of the demand and the supply functions.
... the x axis and the graph of the demand function.
... the graph of the demand function and the horizontal line "price = equilibrium price".
... the horizontal line "price = equilibrium price" and the graph of the supply function.

