Exercises 15 Applications of differential calculus Local/global maxima/minima, points of inflection

Objectives

- be able to determine the local maxima and minima of a function.
- be able to determine the points of inflection of a function.
- be able to determine the global maximum and the global minimum of a cost, revenue, and profit function.
- be able to determine the global minimum of an average cost, average revenue, and average profit function.

Problems

15.1 For each function, determine ...

- i) ... all local maxima and minima.
- ii) ... all points of inflection.
- a) $f(x) = x^2 4$
- b) $f(x) = -8x^3 + 12x^2 + 18x$

c)
$$s(t) = t^4 - 8t^2 + 16$$

d)
$$f(x) = x e^{-x}$$

e) *
$$f(x) = (1 - e^{-2x})^2$$

f) *
$$V(r) = -D\left(\frac{2a}{r} - \frac{a^2}{r^2}\right)$$
 $(D > 0, a > 0)$

15.2 If the total profit for a commodity is

$$P(x) = (2000x + 20x^2 - x^3) CHF$$

where x is the number of items sold, determine the level of sales, x, that maximises profit, and find the maximum profit.

Hints:

- First, find the local maxima.
- Then, check if one of the local maxima is the global maximum.
- 15.3 If the total cost for a service concerning a tourism event is given by

$$C(x) = \left(\frac{1}{4}x^2 + 4x + 100\right) \cdot 100 \text{ CHF}$$

where x represents the extent of the service, what value of x will result in a minimum average cost? Determine the minimum average cost.

15.4 Suppose that the production capacity for a certain commodity cannot exceed 30. If the total profit for this company is

$$P(x) = (4x^3 - 210x^2 + 3600x) CHF$$

where x is the number of units sold, determine the number of items that will maximise profit.

15.5 (see next page)

15.5 Suppose the annual profit for a store is given by

 $P(x) = (-0.1x^3 + 3x^2) \cdot 1000 \text{ CHF}$

where x is the number of years past 2010. If this model is accurate, determine the point of inflection for the profit.

- 15.6 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
 - a) If f has a local maximum at $x = x_0$ it can be concluded that ...

 $\begin{array}{|c|c|c|c|c|} & \dots f(x_0) > f(x) \text{ for any } x \neq x_0 \\ & \dots f(x_0) > f(x) \text{ for any } x > x_0 \\ & \dots f(x_0) > f(x) \text{ for any } x < x_0 \\ & \dots f(x_0) > f(x) \text{ for all } x \text{ which are in a certain neighbourhood of } x_0 \\ \hline & \dots f(x_0) < 0, f'(x_0) = 0, \text{ and } f''(x_0) \neq 0, \text{ it can be concluded that } f \text{ has } \dots \\ \hline & \dots \text{ no local minimum at } x = x_0 \\ & \dots \text{ no local maximum at } x = x_0 \\ & \dots \text{ no point of inflection at } x = x_0 \\ \hline & \dots \text{ a point of inflection at } x = x_0 \\ \hline & \dots \text{ a point of inflection } \dots \\ \hline & \dots \text{ is always a local maximum.} \end{array}$

- ... can be a local minimum.
- ... can be a local maximum.

... always exists.