Exercises 10 Exponential function and equations Exponential equations, logarithm, compound interest

Objectives

- be able to determine simple logarithms without a calculator.
- be able to solve simple exponential equations without a calculator.
- be able to calculate a common and a natural logarithm with a calculator.
- be able to apply one of the logarithmic properties in order to solve simple exponential equations.
- be able to treat specific compound interest tasks by means of logarithms.

Problems

10.1 Solve the exponential equations below without a calculator, i.e. find the solutions by guessing.
a) $\quad 2^{x}=16$
b) $\quad 4^{x}=64$
c) $\quad 5^{x}=1$
d) $\quad\left(\frac{3}{2}\right)^{\mathrm{x}}=\frac{27}{8}$
e) $\quad 10^{x}=1^{\prime} 000^{\prime} 000$
f) $\quad 10^{x}=10$
10.2 Determine the following logarithms without a calculator.
a) $\quad \log _{3}(27)$
b) $\quad \log _{4}(16)$
c) $\quad \log _{2}(128)$
d) $\quad \log _{10}(1000)$
e) $\quad \log _{10}(1)$
10.3 Determine the logarithms below with your calculator.
a) $\quad \lg (1.1)$
b) $\quad \ln (1.1)$
c) $\quad \lg (9)$
d) $\quad \ln (9)$
e) $\quad \lg (2345.67)$
f) $\quad \ln (2345.67)$
10.4 Solve the following exponential equations.
a) $\quad 10^{x}=21$
b) $\quad 10^{x}=256.78$
c) $\quad 10^{x}=1^{\prime} 234^{\prime} 567$
10.5 Solve the exponential equations below.
a) $\quad 3^{x}=99$
b) $\quad 1.01^{x}=1.5$
c) $\quad 3^{x+4}=5$
d) $\quad 5^{2 x-1}=12$
e) $\quad 1-e^{5 x}=0.3$
10.6 An initial capital C_{0} is invested at an interest rate r , compounded annually. After n years the capital amounts to C_{n}. Determine n .
a) $\quad \mathrm{C}_{0}=1000 \mathrm{CHF}$
$r=1.00 \%$
$\mathrm{C}_{\mathrm{n}}=1220 \mathrm{CHF}$ (rounded)
b) $\mathrm{C}_{0}=100^{\prime} 000 \mathrm{CHF}$
$\mathrm{r}=2.25 \%$
$\mathrm{C}_{\mathrm{n}}=243$ '519 CHF (rounded)
10.7 How long would $10^{\prime} 000$ CHF have to be invested at 2.5%, compounded annually, to amount to $12^{\prime} 000$ CHF?
10.8 How long would any initial capital have to be invested at 1.25%, compounded annually, to double its value?
10.9 (see next page)
10.9 An initial capital of $10^{\prime} 000.00 \mathrm{CHF}$ is invested at an unknown interest rate, compounded annually. After 10 years the capital amounts to 11 '894.40 CHF. After how many years (from the beginning of the investment) will the capital be worth $15^{\prime} 000.00 \mathrm{CHF}$?
10.10 The sales decay for a product is given by

$$
\mathrm{S}=50^{\prime} 000 \mathrm{e}^{-0.8 \mathrm{x}} \mathrm{CHF}
$$

where S is the monthly sales and x is the number of months that have passed since the end of a promotional campaign.
a) What will be the sales 4 months after the end of the campaign?
b) After how many months after the end of the campaign will sales have dropped below 1000 CHF , if no new campaign is initiated?
10.11 The demand function for a certain commodity is given by

$$
\mathrm{p}=100 \mathrm{e}^{-\mathrm{q} / 2} \mathrm{CHF}
$$

If the price is 1.83 CHF per unit, how many units will be demanded, to the nearest unit?
10.12 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a) $\quad \log _{a}(x)$ is the answer to the question ...

... "a to what power is x ?"
... "x to what power is a?"
... "10 to what power is x ?"
... "10 to what power is a?"
b) If $p=2^{q}$ then ...

\square	$\ldots \mathrm{q}=\left(\frac{1}{2}\right)^{\mathrm{p}}$
\square	$\ldots \mathrm{q}=\frac{\mathrm{p}}{2}$
\square	$\ldots \mathrm{q}=\log _{2}(\mathrm{p})$
\square	$\ldots \mathrm{q}=\ln (2)$

c) $\quad \ln (\mathrm{e})=\ldots$

$$
\begin{array}{ll}
\Gamma & \ldots \log _{\mathrm{e}}(1) \\
\Gamma & \ldots \log _{10}(\mathrm{e}) \\
\Gamma & \ldots 0 \\
\Gamma & \ldots .1
\end{array}
$$

