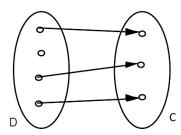
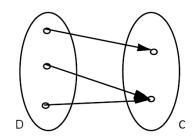
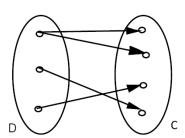
Exercises 3 Function Domain, codomain, range, graph

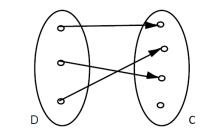

Objectives

- understand what a function is.
- be able to judge whether a given relation is a function.
- be able to determine the range of a given function.
- be able to determine values of a given function.


Problems

3.1 Which of the following relations are functions? Explain your answer.


a)


b)

c)

d)

e) D = set of all courses in the FHGR Tourism bachelor programme

C = set of all FHGR lecturers

f: D \rightarrow C, c \mapsto l = f(c) = lecturer of course c

Tourism, Mathematics, Thomas Borer

- f) $D = \{1992, 1993, \dots, 2001, 2002\}$
 - C = set of all human beings aged between 20 and 30
 - f: D \rightarrow C, y \mapsto p = f(y) = person who was born in the year y
- g) D = set of all human beings aged between 20 and 30
 - $C = \{1992, 1993, \dots, 2001, 2002\}$
 - f: D \rightarrow C, p \mapsto y = f(p) = year of birth of person p
- h) f: $\mathbb{R} \to \mathbb{R}$, $x \mapsto y = f(x) = x^2$
- i) f: $\mathbb{R}^+ \to \mathbb{R}$, $x \mapsto y = f(x) =$ number whose square is x

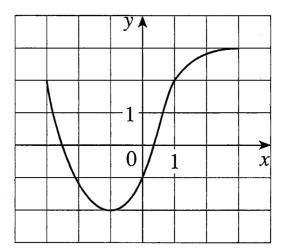
Notice

- \mathbb{R}^+ is the set of all positive real numbers, i.e. $\mathbb{R}^+ = \{x : x \in \mathbb{R} \text{ and } x > 0\}$.
- j) f: $\mathbb{R} \to \mathbb{R}$, $t \mapsto b = f(t) =$ bank account balance at time t
- 3.2 Determine the range R of the functions below:
 - a) D = {January, February, March, ..., December}
 - $C = \{A, B, C, ..., Z\}$
 - f: D \rightarrow C, m \mapsto l = f(m) = initial letter of month m
 - b) D = set of all neighbouring countries of Switzerland
 - C = set of all European cities
 - c: $D \rightarrow C$, $x \mapsto y = c(x) =$ capital of neighbouring country x
 - c) function f in problem 3.1 g)
 - d) function f in problem 3.1 h)
- 3.3 a) f: $\mathbb{R} \to \mathbb{R}$, $x \mapsto f(x) = x^3 x$

Determine the following values:

- i) f(1)
- ii) f(-2)
- iii) f(a)

- iv) $f(b^2)$
- v) f(a b)
- vi) $f(x^3 x)$
- b) g: $\mathbb{R} \setminus \{-1\} \to \mathbb{R}, x \mapsto g(x) = \frac{x^2}{x+1}$


Determine the following values:

- i) g(2)
- ii) g(-3)
- iii) g(a

- iv) $g(b^2)$
- v) g(a b)
- vi) $g\left(\frac{x^2}{x+1}\right)$

3.4 (see next page)

3.4 The graph of a function f ist given as follows:

- a) State the value of f(-1).
- b) Estimate the value of f(2).
- c) For what values of x is f(x) = 2?
- d) Estimate the values of x such that f(x) = 0.
- e) State the domain D of f.
- f) State the range R of f.
- 3.5 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.

a)	The rai	nge of the function f: $\{x: x \in \mathbb{R} \text{ and } x \ge 4\} \to \mathbb{R}, x \mapsto y = f(x) = \sqrt{x-4}, \text{ is the set }$
		$\{x: x \in \mathbb{R} \text{ and } x \geq 4\}$
		$\{y: y \in \mathbb{R} \text{ and } y \ge 4\}$
		ℝ
		$~\mathbb{R}^+_0$

b) f cannot be a function if ...

	the domain of f is no number set.	
	the codomain of f contains more elements than the domain of f.	
	the domain of f contains more elements than the codomain of f.	
	at least one element of the domain of f has more than one image.	
If the range of a function contains as many elements as the domain, it can be concluded t		

c) If the range of a function contains as many elements as the domain, it can be concluded that ...

	the range is the same set as the domain.	
	the codomain contains as many elements as the domain.	
	each element of the codomain is also an element of the range.	
	no element of the range is associated to more than one element of the domain.	

Answers

3.1 no function a)

No element (instead of exactly one element) of C is associated to one of the elements of D.

- b) function
- no function c)

Two elements (instead of exactly one element) of C are associated to one of the elements of D.

- d)
- no function e)

More than one element (instead of exactly one element) of C are associated to some elements of D.

f)

Many elements (instead of exactly one element) of C are associated to each element of D.

- function g)
- h) function
- i) no function

Two elements (instead of exactly one element) of \mathbb{R} are associated to each element of \mathbb{R}^+ .

- j) function
- 3.2 a) $R = \{A, D, F, J, M, N, O, S\}$
 - b) R = {Berlin, Vienna, Vaduz, Rome, Paris}
 - R = Cc)
 - $R = \mathbb{R}_0^+$ d)

Notice:

- \mathbb{R}_0^+ is the set of all positive real numbers, including zero, i.e. $\mathbb{R}_0^+ = \{x: x \in \mathbb{R} \text{ and } x \ge 0\}$.

- 3.3 $f(1) = 1^3 - 1 = 0$ i) a)
 - $f(-2) = (-2)^3 (-2) = -6$ ii)
 - $f(a) = a^3 a$ iii)
 - $f(b^2) = (b^2)^3 b^2 = b^6 b^2$ iv)
 - $f(a b) = (a b)^3 (a b) = a^3 3a^2b + 3ab^2 b^3 a + b$ v)
 - $f(x^3-x)=(x^3-x)^3-(x^3-x)=x^9-3x^7+3x^5-2x^3+x$ vi)
 - b)
- $g(2) = \frac{2^2}{2+1} = \frac{4}{3}$ $g(-3) = \frac{(-3)^2}{-3+1} = -\frac{9}{2}$ $g(a) = \frac{a^2}{a+1}$ ii)
 - iii)
 - iv)
 - $g(b^{2}) = \frac{(b^{2})^{2}}{b^{2}+1} = \frac{b^{4}}{b^{2}+1}$ $g(a-b) = \frac{(a-b)^{2}}{(a-b)+1} = \frac{a^{2}-2ab+b^{2}}{a-b+1}$
 - $g\left(\frac{x^2}{x+1}\right) = \frac{\left(\frac{x^2}{x+1}\right)^2}{\left(\frac{x^2}{x+1}\right)+1} = \frac{x^4}{x^3 + 2x^2 + 2x + 1}$

- 3.4 a) f(-1) = -2
 - b) $f(2) \approx 2.8$
 - c) $x_1 = -3, x_2 = 1$
 - d) $x_1 \approx -2.5, x_2 \approx 0.3$
 - e) $D = \{x: x \in \mathbb{R} \text{ and } -3 \le x \le 3\} = [-3,3]$
 - f) $R = \{y: y \in \mathbb{R} \text{ and } -2 \le y \le 3\} = [-2,3]$
- 3.5 a) 4th statement
 - b) 4th statement
 - c) 4th statement