Indefinite integral

Ex.: Financial mathematics
Given the marginal cost function C^{\prime} for the production of a commodity:

$$
C^{\prime}(x)=3 x+50
$$

What is the cost function C ?

$$
C(x)=\ldots ?
$$

General problem

Given a function f. What function F is such that $F^{\prime}=f$?
Ex.: $\quad f(x)=2 x$
$\Rightarrow \quad \mathrm{F}_{1}(\mathrm{x})=\mathrm{x}^{2}$
as $\mathrm{F}_{1}^{\prime}(\mathrm{x})=2 \mathrm{x}=\mathrm{f}(\mathrm{x})$
$F_{2}(x)=x^{2}+1$
as $\mathrm{F}_{2}^{\prime}(\mathrm{x})=2 \mathrm{x}+0=2 \mathrm{x}=\mathrm{f}(\mathrm{x})$
$F_{3}(x)=x^{2}-4$
as $\mathrm{F}_{3}^{\prime}(\mathrm{x})=2 \mathrm{x}+0=2 \mathrm{x}=\mathrm{f}(\mathrm{x})$
$F(x)=x^{2}+C(C \in \mathbb{R})$
as $\mathrm{F}^{\prime}(\mathrm{x})=2 \mathrm{x}+0=2 \mathrm{x}=\mathrm{f}(\mathrm{x})$

These are already all functions F with $F^{\prime}=f$. There are no additional functions F with equations different from $F(x)=x^{2}+C(C \in \mathbb{R})$.

$$
f(x)=8 x^{3}
$$

$\Rightarrow \quad \mathrm{F}_{1}(\mathrm{x})=2 \mathrm{x}^{4}$
$\mathrm{F}_{2}(\mathrm{x})=2 \mathrm{x}^{4}+5$
$\mathrm{F}_{3}(\mathrm{x})=2 \mathrm{x}^{4}-11$
...

$$
\mathrm{F}(\mathrm{x})=2 \mathrm{x}^{4}+\mathrm{C}(\mathrm{C} \in \mathbb{R}) \quad \text { as } \mathrm{F}^{\prime}(\mathrm{x})=8 \mathrm{x}^{3}+0=8 \mathrm{x}^{3}=\mathrm{f}(\mathrm{x})
$$

Definitions

F is called an antiderivative of f if its derivative F^{\prime} is equal to f, i.e. $F^{\prime}(x)=f(x)$.
The set of all antiderivatives of the function f is called the indefinite integral of f, denoted $\int f(x) d x$.

Ex.: $\quad \mathrm{f}(\mathrm{x})=8 \mathrm{x}^{3}$
All antiderivatives F have the form $F(x)=2 x^{4}+C(C \in \mathbb{R})$.
Therefore, we write $\int f(x) d x=\int 8 x^{3} d x=2 x^{4}+C$

$$
\begin{aligned}
& f(x)=12 x^{2} \\
& \int f(x) d x=\int 12 x^{2} d x=4 x^{3}+C \\
& \int 2 x d x=x^{2}+C \\
& \int 3 e^{3 x} d x=e^{3 x}+C
\end{aligned}
$$

