Derivative

Function f

f: $\mathrm{D} \rightarrow \mathbb{R} \quad$ where $\mathrm{D} \subseteq \mathbb{R}$
$\mathrm{x} \mapsto \mathrm{y}=\mathrm{f}(\mathrm{x})$

Ex.: $\quad f(x)=24 \sqrt{x+1}-2 x-60$

What do we want to know?
Slope of the tangent to the graph of the function f at a certain point $A\left(x_{0} \mid f\left(x_{0}\right)\right)$.

Why do we want to know the slope?

- increasing (slope >0), decreasing (slope <0)
- local maximum/minimum $($ slope $=0)$
- concavity (concave up if slope increases, concave down if slope decreases), points of inflection

Applications in economics

- tendency of costs/revenue/profit
- maximum/minimum of costs/revenue/profit
- marginal costs/revenue/profit (change of costs/revenue/profit if number x of items increases by one)

Definition

The slope of the tangent to the graph of f through the point $A\left(x_{0} \mid f\left(x_{0}\right)\right)$ is called the derivative (or rate of change) of \mathbf{f} at \mathbf{x}_{0}, denoted $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)$ (" f prime of x_{0} ").

How can we determine the slope?
The slope of the secant through the points $A\left(x_{0} \mid f\left(x_{0}\right)\right)$ and $B\left(x_{0}+\Delta x \mid f\left(x_{0}+\Delta x\right)\right)$ tends towards the slope of the tangent through $\mathrm{A}\left(\mathrm{x}_{0} \mid \mathrm{f}\left(\mathrm{x}_{0}\right)\right)$ as $\Delta \mathrm{x}$ tends towards 0 .

Ex.: $\quad \mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$

$$
x \mapsto y=f(x)=x^{2}
$$

$\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=2 \mathrm{x}_{0}$

Definition

Suppose that the derivative (rate of change) $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)$ exists for all $\mathrm{x}_{0} \in \mathrm{D}_{1}$, where $\mathrm{D}_{1} \subseteq \mathrm{D}$.
The function f^{\prime}
$\mathrm{f}^{\prime}: \mathrm{D}_{1} \rightarrow \mathbb{R}$
$x \mapsto y=f^{\prime}(x)$
is called the derivative (or derived function) of f.
Ex. 1: $\quad \mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$
$x \mapsto y=f(x)=x^{2}$
$\mathrm{f}^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$
$\mathrm{x} \mapsto \mathrm{y}=\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}$

Ex. 2: $\quad \mathrm{f}: \mathrm{D} \rightarrow \mathbb{R}$
$\mathrm{x} \mapsto \mathrm{y}=\mathrm{f}(\mathrm{x})=24 \sqrt{\mathrm{x}+1}-2 \mathrm{x}-60$
$\mathrm{f}^{\prime}: \mathrm{D}_{1} \rightarrow \mathbb{R}$
$x \mapsto y=f^{\prime}(x)=\frac{12}{\sqrt{x+1}}-2$

