Exponential function

Definition

f:	$D \rightarrow \mathbb{R}$	$(D\subseteq\mathbb{R})$
	$x \mapsto y = f(x) = c \cdot a^x$	$(a \in \mathbb{R}^+ \setminus \{1\}, c \in \mathbb{R} \setminus \{0\})$
	a > 1: exponential growth	
	a < 1: exponential decay	

Graph

2. Parameter **a** (varying **a**, keeping c constant)

Examples

1. Compound interest (exponential **growth**)

$C_n = C_0 \cdot q^n$	$ C_0 = initial \text{ capital} $ $ C_0 = initial \text{ capital} $ $ C_n = \text{ capital after n compounding periods} $ $ n = \text{ number of compounding periods (often: 1 compounding period = 1 yea $ $ q = interest/growth \text{ factor } = 1 + r (r > 0, q > 1) $ $ r = interest \text{ rate per compounding period} $	
	Ex.: $C_0 := 1000, r := 2\% = 0.02 \implies q = 1.02 \implies C_n = 1000 \cdot 1.02^n$	

2. Consumer price index (exponential **decay**)

$$\begin{split} P(t) &= P_0 \cdot q^t \\ P_0 &= \text{initial price / initial purchasing power} \\ P(t) &= \text{price / purchasing power at time t (often: t in years)} \\ q &= \text{decay factor} = 1 + r \quad (r < 0, q < 1) \\ \text{Ex.:} \quad P_0 &:= 100, r := -3\% = -0.03 \implies q = 0.97 \implies P(t) = 100 \cdot 0.97^t \end{split}$$