Exponential function

Definition

f:	$D \rightarrow \mathbb{R}$	$(D \subseteq \mathbb{R})$
	$x \mapsto y=f(x)=c \cdot a^{x}$	$\left(a \in \mathbb{R}^{+} \backslash\{1\}, c \in \mathbb{R} \backslash\{0\}\right)$
	$a>1:$ exponential growth	
	$a<1:$ exponential decay	

Graph

$$
\text { 1. } y=f(x)=2^{x} \quad(c=1, a=2)
$$

2. Parameter a
(varying a, keeping c constant)

$$
\begin{aligned}
& y=f_{1}(x)=2^{x} \\
& y=f_{2}(x)=4^{x} \\
& y=f_{3}(x)=\left(\frac{1}{2}\right)^{x}
\end{aligned}
$$

$$
(\mathrm{c}=1, \mathbf{a}=\mathbf{2})
$$

$$
(c=1, \mathbf{a}=4)
$$

$$
\left(\mathrm{c}=1, \mathrm{a}=\frac{1}{2}\right)
$$

3. Parameter \mathbf{c}
$\begin{array}{ll}y=f_{1}(x)=2^{x} & (c=1, a=2) \\ y=f_{2}(x)=3 \cdot 2^{x} & (c=\mathbf{3}, a=2) \\ y=f_{3}(x)=\frac{1}{2} \cdot 2^{x} & \left(c=\frac{1}{2}, a=2\right)\end{array}$

4. $y=f_{1}(x)=10 \cdot 2^{x}$
($\mathrm{c}=10, \mathrm{a}=2$)
$y=f_{2}(x)=20 \cdot 0.25^{x}$
($\mathrm{c}=20, \mathrm{a}=0.25$)
$y=f_{3}(x)=40 \cdot 0.75^{x}$
($\mathrm{c}=40, \mathrm{a}=0.75$)
$y=f_{4}(x)=30 \cdot 1.5^{x}$

$$
(\mathrm{c}=30, \mathrm{a}=1.5)
$$

Examples

1. Compound interest (exponential growth)

$$
\begin{aligned}
C_{n}=C_{0} \cdot q^{n} & C_{0}=\text { initial capital } \\
& C_{n}=\text { capital after } n \text { compounding periods } \\
& n=\text { number of compounding periods (often: } 1 \text { compounding period }=1 \text { year) } \\
& q=\text { interest/growth factor }=1+r \quad(r>0, q>1) \\
& r=\text { interest rate per compounding period } \\
& \text { Ex.: } \quad C_{0}:=1000, r:=2 \%=0.02 \Rightarrow q=1.02 \Rightarrow C_{n}=1000 \cdot 1.02^{\mathrm{n}}
\end{aligned}
$$

2. Consumer price index (exponential decay)
$\mathrm{P}(\mathrm{t})=\mathrm{P}_{0} \cdot \mathrm{q}^{\mathrm{t}} \quad \mathrm{P}_{0}=$ initial price / initial purchasing power
$\mathrm{P}(\mathrm{t})=$ price / purchasing power at time t (often: t in years)
$\mathrm{q}=$ decay factor $=1+\mathrm{r} \quad(\mathrm{r}<0, \mathrm{q}<1)$
Ex.: $\quad P_{0}:=100, \mathrm{r}:=-3 \%=-0.03 \Rightarrow \mathrm{q}=0.97 \Rightarrow \mathrm{P}(\mathrm{t})=100 \cdot 0.97^{\mathrm{t}}$
