Function

Definition and examples

Def.: A function f is a rule that associates to each element x in a set D exactly one element y in a set C .

The function f maps the set D onto the set C .
f: $\quad \mathrm{D} \rightarrow \mathrm{C}$

$$
\mathrm{x} \mapsto \mathrm{y}=\mathrm{f}(\mathrm{x}) \quad \text { ("f of } \mathrm{x} \text { ") }
$$

The set D is the domain, the set C is the codomain, and the set R is the range of the function f.
The element y is the image of the element x .
or (if D and C are number sets): y is the value of f at x .

Ex.: 1. $\quad \mathrm{D}=$ set of all Swiss holiday resorts $\mathrm{C}=$ set of all human beings
f: $\quad \mathrm{D} \rightarrow \mathrm{C}$
$\mathrm{r} \mapsto \mathrm{d}=\mathrm{f}(\mathrm{r})=$ director of holiday resort r

2. $\mathrm{D}=$ set of all countries of the world

C $=$ set of all cities of the world

$$
\begin{array}{ll}
\text { f: } \quad & \mathrm{D} \rightarrow \mathrm{C} \\
\mathrm{a} \rightarrow \mathrm{~b}=\mathrm{f}(\mathrm{a})=\text { capital of country a }
\end{array}
$$

3. Cable car company
$\mathrm{D}=\mathbb{N} \quad$ (= set of natural numbers)
$C=\mathbb{R} \quad$ (= set of real numbers)
f: $\quad \mathbb{N} \rightarrow \mathbb{R}$
$\mathrm{n} \mapsto \mathrm{r}=\mathrm{f}(\mathrm{n})=$ revenue (e.g. in CHF) when n tickets are sold
4. $\mathrm{D}=\mathbb{N}$
$\mathrm{C}=\mathbb{Z}$
f: $\quad \mathbb{N} \rightarrow \mathbb{Z}$
$\mathrm{n} \mapsto \mathrm{y}=\mathrm{f}(\mathrm{n})=\mathrm{n}-4$

5. $\mathrm{D}=\mathrm{C}=\mathbb{R}$

$$
\begin{array}{ll}
\mathrm{p}: & \mathbb{R} \rightarrow \mathbb{R} \\
& \mathrm{x} \mapsto \mathrm{y}=\mathrm{p}(\mathrm{x})=\frac{\mathrm{x}^{3}-3}{2 \mathrm{x}^{2}+1}
\end{array}
$$

Representation of a function

Arrow diagram

Table of values

x	y
1	1
3	9
5	25
-5	25
0.4	0.16
\ldots	\ldots

Equation

$$
\text { f: } \begin{aligned}
& \mathbb{R} \rightarrow \mathbb{R} \\
& x \not \mapsto y=f(x)=x^{2}
\end{aligned}
$$

Graph

