Function

Definition and examples

Def.: A function f is a rule that associates to each element x in a set D exactly one element y in a set C.

The function f maps the set D onto the set C.

f:
$$D \rightarrow C$$

 $x \mapsto y = f(x)$ ("f of x")

The set D is the **domain**, the set C is the **codomain**, and the set R is the **range** of the function f.

The element y is the **image** of the element x. or (if D and C are number sets): y is the **value** of f at x.

Ex.: 1. D = set of all Swiss holiday resorts

C = set of all human beings

f: $D \rightarrow C$

 $r \mapsto d = f(r) = director of holiday resort r$

2. D = set of all countries of the world

C = set of all cities of the world

 $f: D \rightarrow C$

 $a \mapsto b = f(a) = capital of country a$

3. Cable car company

 $D = \mathbb{N}$ (= set of natural numbers)

 $C = \mathbb{R}$ (= set of real numbers)

f: $\mathbb{N} \to \mathbb{R}$

 $n \mapsto r = f(n) = revenue$ (e.g. in CHF) when n tickets are sold

4. $D = \mathbb{N}$

$$C = \mathbb{Z}$$

 $f{:} \qquad \mathbb{N} \to \, \mathbb{Z}$

$$n \mapsto y = f(n) = n - 4$$

- 5. $D = C = \mathbb{R}$
 - p: $\mathbb{R} \to \mathbb{F}$

 $\mathbb{R} \to \mathbb{R}$ $x \mapsto y = p(x) = \frac{x^3 - 3}{2x^2 + 1}$

Representation of a function

Arrow diagram

Table of values

X	у
1	1
3	9
5	25
- 5	25
0.4	0.16

Equation

f:
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f(x) = x^2$

Graph

