Review exercises 2

Differential calculus, integral calculus

Problems

R2.1 Decide whether the statements below are true or false:
a) "The derivative (derived function) of a function is a function."
b) "The derivative (rate of change) of a function at a particular position is a number."
c) "The function f has a local maximum at $\mathrm{x}=\mathrm{x}_{1}$ if $\mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)=0$ and $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{1}\right)>0$."
d) "If f " $\left(\mathrm{x}_{2}\right)=0$ and $\mathrm{f}^{\prime \prime \prime}\left(\mathrm{x}_{2}\right)<0$, then the function f has a point of inflection at $\mathrm{x}=\mathrm{x}_{2}$."
e) \quad IIf $g^{\prime}=f$, then g is an antiderivative of $f . "$
f) " f with $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+20$ is an antiderivative of g with $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}$."
g) "f with $\mathrm{f}(\mathrm{x})=3 \mathrm{x}$ has infinitely many antiderivatives."
h) "The indefinite integral of a function is a set of functions."

R2.2 Determine the value $f\left(x_{0}\right)$, the first derivative $f^{\prime}\left(x_{0}\right)$, and the second derivative $f^{\prime \prime}\left(x_{0}\right)$ at x_{0} for the functions f below:
a) $\quad f(x)=4 x^{2}\left(x^{2}-1\right)$
i) $\quad x_{0}=0$
ii) $\quad \mathrm{x}_{0}=-1$
b) $\quad f(x)=\left(-3 x^{2}+2 x-1\right) \cdot e^{x}$
i) $\quad x_{0}=0$
ii) $\quad \mathrm{x}_{0}=-2$
c) $\quad f(x)=\left(x^{2}+2\right) \cdot e^{-3 x}$
i) $\quad x_{0}=1$
ii) $\quad \mathrm{x}_{0}=-\frac{1}{3}$

R2.3 For the given cost function $C(x)$ and revenue function $R(x)$ determine ...
i) ... the marginal cost function $\mathrm{C}^{\prime}(\mathrm{x})$.
ii) ... the marginal revenue function $\mathrm{R}^{\prime}(\mathrm{x})$.
iii) ... the marginal profit function $\mathrm{P}^{\prime}(\mathrm{x})$.
a) $\quad C(x)=200+40 x$

$$
R(x)=60 x
$$

b) $\quad C(x)=100+20 x+5 x^{2}$
$R(x)=100 x-2 x^{2}$
c) $\quad C(x)=50+20 x^{2}+3 e^{4 x}$
$R(x)=200 x-e^{-4 x^{2}}$

R2.4 For each function, determine ...
i) ... the local maxima and minima.
ii) ... the points of inflection.
a) $\quad f(x)=2 x^{3}-9 x^{2}+12 x-1$
b) $\quad f(x)$ as in R2.2 a)

R2.5 (see next page)

R2.5 The total revenue function (revenue in CHF) for a commodity is given by

$$
R(x)=36 x-0.01 x^{2}
$$

Determine the maximum revenue if production is limited to at most 1500 units.

R2.6 If the total cost function (costs in CHF) for a product is

$$
\mathrm{C}(\mathrm{x})=100+\mathrm{x}^{2}
$$

producing how many units x will result in a minimum average cost? Determine the minimum average cost.

R2.7 A firm can produce only 1000 units per month. The monthly total cost (in CHF) ist given by

$$
C(x)=300+200 x
$$

where x is the number produced. If the total revenue (in CHF) is given by

$$
R(x)=250 x-\frac{1}{100} x^{2}
$$

how many items should the firm produce for a maximum profit? Determine the maximum profit.

R2.8 Determine the indefinite integrals below:
a) $\int\left(x^{4}-3 x^{3}-6\right) d x$
b) $\quad \int\left(\frac{1}{2} x^{6}-\frac{2}{3 x^{4}}\right) d x$

R2.9 The equation of the third derivative f " of a function f is given as follows:

$$
f^{\prime \prime \prime}(x)=3 x+1
$$

Determine the equation of the function f such that $f^{\prime \prime}(0)=0, f^{\prime}(0)=1, f(0)=2$

R2.10 If the marginal cost (in CHF) for producing a product is $\mathrm{C}^{\prime}(x)=5 x+10$, with a fixed cost of 800 CHF , what will be the cost of producing 20 units?

R2.11 A certain firm's marginal cost $\mathrm{C}^{\prime}(\mathrm{x})$ and the derivative of the average revenue $\overline{\mathrm{R}}^{\prime}(\mathrm{x})$ are given as follows:

$$
\begin{aligned}
& \mathrm{C}^{\prime}(\mathrm{x})=6 \mathrm{x}+60 \\
& \overline{\mathrm{R}}^{\prime}(\mathrm{x})=-1
\end{aligned}
$$

The total cost and revenue of the production of 10 items are 1000 CHF and 1700 CHF , respectively.
How many units will result in a maximum profit? Determine the maximum profit.

R2.12 The demand function (price in CHF) for a product is

$$
p=f(x)=49-x^{2}
$$

and the supply function (price in CHF) is

$$
\mathrm{p}=\mathrm{g}(\mathrm{x})=4 \mathrm{x}+4
$$

Determine the equilibrium point and both the consumer's and the producer's surplus there.

R2.13 (see next page)

R2.13 The demand function (price in CHF) for a product is

$$
\mathrm{p}=\mathrm{f}(\mathrm{x})=110-\mathrm{ax}^{2}
$$

and the supply function (price in CHF) is

$$
\mathrm{p}=\mathrm{g}(\mathrm{x})=2-\frac{6}{5} \mathrm{x}+\mathrm{bx}^{2}
$$

with unknown parameters a and b . The equilibrium price is 10 CHF , and the producer's surplus is 73.33 CHF (rounded).

Determine the two unknown parameters a and b .
Hint:

- Use the unrounded value $\left(73+\frac{1}{3}\right) \mathrm{CHF}=\frac{220}{3} \mathrm{CHF}$ for the producer's surplus.

Answers

R2.1
a) true
b) true
c) false
d) true
e) true
f) false
g) true
h) true

R2.2 a) $\quad f^{\prime}(x)=16 x^{3}-8 x$ $f^{\prime \prime}(x)=48 x^{2}-8$
i) $\quad \mathrm{f}(0)=0$
$\mathrm{f}^{\prime}(0)=0$
$\mathrm{f}^{\prime \prime}(0)=-8$
ii) $\quad \mathrm{f}(-1)=0$
$f^{\prime}(-1)=-8$
$f^{\prime \prime}(-1)=40$
b) $\quad f^{\prime}(x)=\left(-3 x^{2}-4 x+1\right) \cdot e^{x}$ $f^{\prime \prime}(x)=\left(-3 x^{2}-10 x-3\right) \cdot e^{x}$
i) $\quad f(0)=-1$
$f^{\prime}(0)=1$
$f^{\prime \prime}(0)=-3$
ii) $f(-2)=-17 \cdot e^{-2}=-2.300 \ldots$
$f^{\prime}(-2)=-3 \cdot e^{-2}=-0.406 \ldots$
$\mathrm{f}^{\prime \prime}(-2)=5 \cdot \mathrm{e}^{-2}=0.676 \ldots$
c) $\quad f^{\prime}(x)=\left(-3 x^{2}+2 x-6\right) \cdot e^{-3 x}$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=\left(9 \mathrm{x}^{2}-12 \mathrm{x}+20\right) \cdot \mathrm{e}^{-3 \mathrm{x}}$
i) $\quad f(1)=3 \cdot e^{-3}=0.149 \ldots$

$$
f^{\prime}(1)=-7 \cdot e^{-3}=-0.348 \ldots
$$

$$
\mathrm{f}^{\prime \prime}(1)=17 \cdot \mathrm{e}^{-3}=0.846 \ldots
$$

ii) $\quad f\left(-\frac{1}{3}\right)=\frac{19}{9} e=5.738 \ldots$

$$
f^{\prime}\left(-\frac{1}{3}\right)=-7 e=-19.027 \ldots
$$

$$
f^{\prime \prime}\left(-\frac{1}{3}\right)=25 \mathrm{e}=67.957 \ldots
$$

R2.3
a) i) $\quad \mathrm{C}^{\prime}(\mathrm{x})=40$
iii) $\quad P^{\prime}(x)=20$
b)
i) $\quad C^{\prime}(x)=20+10 x$
ii) $\quad R^{\prime}(x)=100-4 x$
iii) $\quad P^{\prime}(x)=80-14 x$
c) i) $\quad C^{\prime}(x)=40 x+12 e^{4 x}$
ii) $\quad R^{\prime}(x)=200+8 x e^{-4 x^{2}}$
iii) $\quad P^{\prime}(x)=200-40 x-12 e^{4 x}+8 x e^{-4 x^{2}}$

R2.4 a) $f(x)=2 x^{3}-9 x^{2}+12 x-1$
$\mathrm{f}^{\prime}(\mathrm{x})=6 \mathrm{x}^{2}-18 \mathrm{x}+12$
$f^{\prime \prime}(x)=12 x-18$
$\mathrm{f}^{\prime \prime}$ " x) $=12$
i) $\quad f^{\prime}(x)=0$ at $x_{1}=1$ and $x_{2}=2$
$\begin{array}{lll}f^{\prime \prime}\left(\mathrm{x}_{1}\right)=-6<0 & \Rightarrow & \text { local maximum at } \mathrm{x}_{1}=1 \\ \mathrm{f}^{\prime \prime}\left(\mathrm{x}_{2}\right)=6>0 & \Rightarrow & \text { local minimum at } \mathrm{x}_{2}=2\end{array}$
ii) $\quad f^{\prime \prime}(\mathrm{x})=0$ at $\mathrm{x}_{3}=\frac{3}{2}$
$\mathrm{f}^{\prime \prime \prime}\left(\mathrm{x}_{3}\right)=12 \neq 0 \quad \Rightarrow \quad$ point of inflection at $\mathrm{x}_{3}=\frac{3}{2}$
b) $\quad f(x)=4 x^{2}\left(x^{2}-1\right)$ $f^{\prime}(x)=16 x^{3}-8 x=8 x\left(2 x^{2}-1\right)$ $f^{\prime \prime}(x)=48 x^{2}-8=8\left(6 x^{2}-1\right)$
$\mathrm{f}^{\prime \prime \prime}(\mathrm{x})=96 \mathrm{x}$
i) $\quad f^{\prime}(x)=0$ at $x_{1}=0, x_{2}=\frac{1}{\sqrt{2}}$, and $x_{3}=-\frac{1}{\sqrt{2}}$
$\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{1}\right)=-8<0 \quad \Rightarrow \quad$ local maximum at $\mathrm{x}_{1}=0$
$\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{2}\right)=16>0 \quad \Rightarrow \quad$ local minimum at $\mathrm{x}_{2}=\frac{1}{\sqrt{2}}$
$f^{\prime \prime}\left(\mathrm{x}_{3}\right)=16>0 \quad \Rightarrow \quad$ local minimum at $\mathrm{x}_{3}=-\frac{1}{\sqrt{2}}$
ii) $\quad f^{\prime \prime}(x)=0$ at $\mathrm{x}_{4}=\frac{1}{\sqrt{6}}$ and $\mathrm{x}_{5}=-\frac{1}{\sqrt{6}}$
$\mathrm{f}^{\prime \prime \prime}\left(\mathrm{x}_{4}\right)=\frac{96}{\sqrt{6}} \neq 0 \quad \Rightarrow \quad$ point of inflection at $\mathrm{X}_{4}=\frac{1}{\sqrt{6}}$
$f^{\prime \prime \prime}\left(\mathrm{x}_{5}\right)=-\frac{96}{\sqrt{6}} \neq 0 \quad \Rightarrow \quad$ point of inflection at $\mathrm{x}_{5}=-\frac{1}{\sqrt{6}}$

R2.5 Local maximum at $x=1800$ lies outside the possible interval $0 \leq x \leq 1500$
$\mathrm{R}(1500)=31^{\prime} 500 \mathrm{CHF}>\mathrm{R}(0)=0 \mathrm{CHF}$
$\Rightarrow R=31^{\prime} 500$ CHF is the global maximum revenue at $x=1500$.

R2.6 $\overline{\mathrm{C}}(\mathrm{x})=\frac{\mathrm{C}(\mathrm{x})}{\mathrm{x}}=\frac{100}{\mathrm{x}}+\mathrm{x}$
$\overline{\mathrm{C}}(\mathrm{x})$ has a local minimum at $\mathrm{x}_{1}=10$
$\overline{\mathrm{C}}(10)=20 \mathrm{CHF}$
$\overline{\mathrm{C}}(\mathrm{x})>\overline{\mathrm{C}}\left(\mathrm{x}_{1}\right)$ if $\mathrm{x} \neq \mathrm{x}_{1}$ as there is no local maximum
$\Rightarrow \overline{\mathrm{C}}=20 \mathrm{CHF}$ is the global minimum average cost at $\mathrm{x}=10$.

R2.7 $P(x)=R(x)-C(x)=-\frac{1}{100} x^{2}+50 x-300$
$\mathrm{P}(\mathrm{x})$ has a local maximum at $\mathrm{x}_{1}=2500$. This is outside the possible interval $0 \leq \mathrm{x} \leq 1000$ $\mathrm{P}(1000)=39^{\prime} 700 \mathrm{CHF}>\mathrm{P}(0)=-300 \mathrm{CHF}$
$\Rightarrow \mathrm{P}=39^{\prime} 700 \mathrm{CHF}$ is the global maximum profit at the endpoint $\mathrm{x}=1000$.

R2.8 a) $\int\left(x^{4}-3 x^{3}-6\right) d x=\frac{x^{5}}{5}-\frac{3 x^{4}}{4}-6 x+C$
b) $\quad \int\left(\frac{1}{2} x^{6}-\frac{2}{3 x^{4}}\right) d x=\frac{x^{7}}{14}+\frac{2}{9 x^{3}}+C$

R2.9 $f(x)=\frac{x^{4}}{8}+\frac{x^{3}}{6}+x+2$

R2.10 $\mathrm{C}(20)=2000 \mathrm{CHF}$
Hint:

- First, determine the cost function $C(x) \Rightarrow C(x)=\frac{5}{2} x^{2}+10 x+800$

R2.11 (see next page)

R2.11 $\mathrm{P}=800 \mathrm{CHF}$ is the global maximum profit at $\mathrm{x}=15$ units.
Hints:

- Determine the cost function $C(x) \Rightarrow C(x)=3 x^{2}+60 x+100$
- Determine the average revenue function $\overline{\mathrm{R}}(\mathrm{x}) \Rightarrow \overline{\mathrm{R}}(\mathrm{x})=-\mathrm{x}+\mathrm{C}$
- Determine the revenue function $R(x) \Rightarrow R(x)=-x^{2}+180 x$
- Determine the profit function $P(x) \Rightarrow P(x)=-4 x^{2}+120 x-100$
- Determine the local maxima of the profit function $\mathrm{P}(\mathrm{x})$.
- Check if one of the local maxima is the global maximum.

R2.12 Equilibrium quantity $\mathrm{x}=5$
Equilibrium price
Consumer's surplus
$\mathrm{p}=24 \mathrm{CHF}$
Producer's surplus
$\mathrm{CS}=83.33 \mathrm{CHF}$ (rounded)
$\mathrm{PS}=50 \mathrm{CHF}$

R2.13 $\mathrm{a}=1$
$\mathrm{b}=0.2$

