Exercises 17 Definite integral
 Definite integral, area under a curve, consumer's/producer's surplus

Objectives

- be able to apply the fundamental theorem of calculus.
- be able to determine a definite integral of a constant, basic power, and basic exponential function.
- be able to determine the area between the graph of a basic power function and the abscissa.
- be able to determine a consumer's and a producer's surplus if the demand and supply functions are basic power functions.

Problems

17.1 Calculate the definite integrals below:
a) $\quad \int_{3}^{4}(2 x-5) d x$
b) $\quad \int_{0}^{1}\left(x^{3}+2 x\right) d x$
c) $\quad \int_{-5}^{-3}\left(\frac{x^{2}}{2}-4\right) d x$
d) $\quad \int_{2}^{4}\left(x^{3}-\frac{x^{2}}{2}+3 x-4\right) d x$
e) $\quad \int_{-2}^{2}\left(2 x^{2}-\frac{x^{4}}{8}\right) d x$
f) $\quad \int_{-1}^{1} e^{x} d x$
g) $\quad \int_{0}^{1} e^{2 x} d x$
h) $\quad \int_{-1}^{1} e^{-3 x} d x$
17.2 Determine the area between the graph of the function f and the x -axis on the interval where the graph of f is above the x-axis, i.e. where $f(x) \geq 0$.
a) $\quad f(x)=-x^{2}+1$
b) $\quad f(x)=x^{3}-x^{2}-2 x$
17.3 The demand function (price in CHF) for a product is $\mathrm{p}=\mathrm{f}(\mathrm{x})=100-4 \mathrm{x}^{2}$. If the equilibrium quantity is 4 units, what is the consumer's surplus?
17.4 The demand function (price in CHF) for a product is $p=f(x)=34-x^{2}$. If the equilibrium price is 9 CHF , what is the consumer's surplus?
17.5 The demand function (price in CHF) for a certain product is

$$
\mathrm{p}=\mathrm{f}(\mathrm{x})=81-\mathrm{x}^{2}
$$

and the supply function (price in CHF) is

$$
\mathrm{p}=\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+4 \mathrm{x}+11
$$

Determine ...
a) \quad. the equilibrium point, i.e. the equilibrium quantitiy and the equilibrium price.
b) $\quad .$. the consumer's surplus at market equilibrium.
c) $\quad .$. the producer's surplus at market equilibrium.
17.6 Suppose that the supply function (price in CHF) for a good is $\mathrm{p}=\mathrm{g}(\mathrm{x})=4 \mathrm{x}^{2}+2 \mathrm{x}+2$. If the equilibrium price is 422 CHF , what is the producer's surplus?
17.7 The demand function (price in CHF) for a certain product is

$$
\mathrm{p}=\mathrm{f}(\mathrm{x})=144-2 \mathrm{x}^{2}
$$

and the supply function (price in CHF) is

$$
\mathrm{p}=\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+33 \mathrm{x}+48
$$

Determine the producer's surplus at the equilibrium point.
17.8 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a) The definite integral of a function is a ...

... real number.
... function.
... set of functions.
... graph.
b) $\quad \int_{a}^{b} f(x) d x \ldots$

$\ldots=f(b)-f(a)$
$\ldots=F(a)-F(b)$ where F is an antiderivative of f.
... is equal to the area between the graph of f and the x-axis in the interval $[a, b]$ if $f(x) \geq 0$ for all $x \in[a, b]$
\lceil... cannot be calculated unless all antiderivatives of f are known.
c) The consumer's surplus is an area between ...
Γ
Γ
Γ
... the graphs of the demand and the supply functions.
... the x axis and the graph of the demand function.
... the graph of the demand function and the horizontal line "price = equilibrium price".
... the horizontal line "price = equilibrium price" and the graph of the supply function.

Answers

17.1 a) $\int_{3}^{4}(2 x-5) d x=\left[x^{2}-5 x\right]_{3}^{4}=\left(4^{2}-5 \cdot 4\right)-\left(3^{2}-5 \cdot 3\right)=2$
b) $\quad \int_{0}^{1}\left(\mathrm{x}^{3}+2 \mathrm{x}\right) \mathrm{dx}=\left[\frac{\mathrm{x}^{4}}{4}+\mathrm{x}^{2}\right]_{0}^{1}=\left(\frac{1^{4}}{4}+1^{2}\right)-\left(\frac{0^{4}}{4}+0^{2}\right)=\frac{5}{4}$
c) $\quad \int_{-5}^{-3}\left(\frac{x^{2}}{2}-4\right) d x=\left[\frac{x^{3}}{6}-4 x\right]_{-5}^{-3}=\left(\frac{(-3)^{3}}{6}-4 \cdot(-3)\right)-\left(\frac{(-5)^{3}}{6}-4 \cdot(-5)\right)=\frac{25}{3}$
d) $\quad \int_{2}^{4}\left(x^{3}-\frac{x^{2}}{2}+3 x-4\right) d x=\left[\frac{x^{4}}{4}-\frac{x^{3}}{6}+\frac{3 x^{2}}{2}-4 x\right]_{2}^{4}=\left(\frac{4^{4}}{4}-\frac{4^{3}}{6}+\frac{3 \cdot 4^{2}}{2}-4 \cdot 4\right)-\left(\frac{2^{4}}{4}-\frac{2^{3}}{6}+\frac{3 \cdot 2^{2}}{2}-4 \cdot 2\right)=\frac{182}{3}$
e) $\quad \int_{-2}^{2}\left(2 x^{2}-\frac{x^{4}}{8}\right) d x=\left[\frac{2 x^{3}}{3}-\frac{x^{5}}{40}\right]_{-2}^{2}=\left(\frac{2 \cdot 2^{3}}{3}-\frac{2^{5}}{40}\right)-\left(\frac{2 \cdot(-2)^{3}}{3}-\frac{(-2)^{5}}{40}\right)=\frac{136}{15}$
f) $\quad \int_{-1}^{1} e^{x} d x=\left[e^{x}\right]_{-1}^{1}=e^{1}-e^{-1}=e-\frac{1}{e}$
g) $\quad \int_{0}^{1} \mathrm{e}^{2 \mathrm{x}} \mathrm{dx}=\left[\frac{1}{2} \mathrm{e}^{2 \mathrm{x}}\right]_{0}^{1}=\frac{1}{2}\left(\mathrm{e}^{2}-1\right)$
h) $\quad \int_{-1}^{1} e^{-3 x} d x=\left[-\frac{1}{3} e^{-3 x}\right]_{-1}^{1}=-\frac{1}{3}\left(e^{-3}-e^{3}\right)=\frac{1}{3}\left(e^{3}-\frac{1}{e^{3}}\right)$
17.2
a) $\quad A=\int_{-1}^{1}\left(-x^{2}+1\right) d x=\left[-\frac{x^{3}}{3}+x\right]_{-1}^{1}=\frac{4}{3}$

b) (see next page)
b) $\quad A=\int_{-1}^{0}\left(x^{3}-x^{2}-2 x\right) d x=\left[\frac{x^{4}}{4}-\frac{x^{3}}{3}-x^{2}\right]_{-1}^{0}=\frac{5}{12}$

Hints:

- First, determine the positions x where the graph of f intersects the x-axis, i.e where $f(x)=0$
- Then, determine the interval on which the graph of f is above the x-axis, i.e. where $f(x) \geq 0$
17.3 Consumer's surplus $\quad \mathrm{CS}=170.67 \mathrm{CHF}$ (rounded)
17.4 Consumer's surplus $\mathrm{CS}=83.33 \mathrm{CHF}$ (rounded)
17.5 a) Equilibrium quantity $\mathrm{x}=5$
Equilibrium price
$\mathrm{p}=56 \mathrm{CHF}$
b) Consumer's surplus
$\mathrm{CS}=83.33 \mathrm{CHF}$ (rounded)
c) Producer's surplus
$\mathrm{PS}=133.33 \mathrm{CHF}$ (rounded)
17.6 Producer's surplus $\mathrm{PS}=2766.67 \mathrm{CHF}$ (rounded)
17.7 Producer's surplus $\quad \mathrm{PS}=103.34 \mathrm{CHF}$ (rounded)
$17.8 \quad$ a) $\quad 1^{\text {st }}$ statement
b) $\quad 3^{\text {rd }}$ statement
c) $\quad 3^{\text {rd }}$ statement

