Exercises 16 Indefinite integral
 Antiderivative, indefinite integral, coefficient/sum rule

Objectives

- be able to determine an antiderivative and the indefinite integral of a constant, basic power, and basic exponential function.
- be able to apply the coefficient and sum rules to determine the indefinite integral of a function.
- be able to determine the cost, revenue, and profit functions if the marginal cost, marginal revenue, and marginal profit functions are known.

Problems

16.1 Determine the indefinite integrals below:
a) $\quad \int x^{2} d x$
b) $\quad \int x^{3} d x$
c) $\quad \int x^{-5} d x$
d) $\quad \int \frac{1}{x^{2}} d x$
e) $\quad \int \frac{1}{x^{4}} d x$
f) $\quad \int 4 d x$
g) $\quad \int(-7) d x$
h) $\quad \int e^{x} d x$
i) $\quad \int e^{3 x} d x$
j) $\quad \int e^{-x} d x$
16.2 Determine the indefinite integral of the following functions $\mathrm{f}:$
a) $\quad f(x)=x^{5}$
b) $\quad \mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}$
c) $\quad f(x)=x^{3}+2 x^{2}-5$
d) $\quad f(x)=\frac{1}{2} x^{5}-\frac{2}{3 x^{2}}$
e) $\quad f(x)=\frac{1}{2} x^{3}-2 x^{2}+4 x-5$
f) $\quad f(x)=x^{10}-\frac{1}{2} x^{3}-x$
16.3 Determine the equations of two antiderivatives F_{1} and F_{2} of f such that the stated conditions are fulfilled.
a) $\quad f(x)=10 x^{2}+x$
$\mathrm{F}_{1}(0)=3$
$F_{2}(0)=-1$
b) $\quad f(x)=x^{3}+3 x+1$
$\mathrm{F}_{1}(2)=5$
$\mathrm{F}_{2}(4)=-8$
16.4 Suppose that we know the equation of the derivative f ' of a function f :

$$
\mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}-50 \mathrm{x}+250
$$

Determine the equation of the function f, if ...
a) $\quad \ldots \mathrm{f}(0)=500$.
b) $\quad \ldots \mathrm{f}(10)=2500$.
16.5 Suppose that we know the equation of the second derivative f " of a function f :

$$
\mathrm{f}^{\prime \prime}(\mathrm{x})=2 \mathrm{x}-1
$$

Determine the equation of ...
a) $\quad \ldots$ the first derivative f^{\prime} such that $f^{\prime}(2)=4$.
b) $\quad \ldots$ the function f such that $f^{\prime}(2)=4$ and $f(1)=-1$.
16.6 If the monthly marginal cost (in CHF) for a product is $\mathrm{C}^{\prime}(\mathrm{x})=2 \mathrm{x}+100$, with fixed costs amounting to 200 CHF , determine the total cost function for a month.
16.7 If the marginal cost (in CHF) for a product is $C^{\prime}(x)=4 x+2$, and the production of 10 units results in a total cost of 300 CHF , determine the total cost function.
16.8 If the marginal cost (in CHF) for a product is $\mathrm{C}^{\prime}(x)=4 x+40$, and the total cost of producing 25 units is 3000 CHF, what will be the total cost of producing 30 units?
16.9 A firm knows that its marginal cost for a product is $\mathrm{C}^{\prime}(\mathrm{x})=3 \mathrm{x}+20$, that its marginal revenue is $\mathrm{R}^{\prime}(\mathrm{x})=44-5 \mathrm{x}$, and that the cost of production and sale of 10 units is 370 CHF.
a) Determine the profit function $\mathrm{P}(\mathrm{x})$.
b) How many units will result in a maximum profit?

Hint:

- The revenue R is zero if no unit is sold. Thus, $R(0)=0$ CHF.
16.10 Suppose that the marginal revenue $\mathrm{R}^{\prime}(\mathrm{x})$ and the derivative of the average cost $\overline{\mathrm{C}}^{\prime}(\mathrm{x})$ are given as follows:

$$
\begin{aligned}
& \mathrm{R}^{\prime}(\mathrm{x})=300 \\
& \overline{\mathrm{C}}^{\prime}(\mathrm{x})=2-\frac{1800}{\mathrm{x}^{2}}
\end{aligned}
$$

The production of 10 units results in a total cost of 3000 CHF.
a) Determine the total cost function $\mathrm{C}(\mathrm{x})$.
b) How many units will result in a maximum profit? Find the maximum profit.
16.11 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a) An antiderivative of a function is a ...

\square	... real number.
\square	... function.
\square	... set of functions.
\square	... graph.

b) The indefinite integral of a function is a ...

\square	... real number.
\square	... function.
\square	... set of functions.
\square	... graph.

c) If $f=g^{\prime}$ then ...
Γ
Γ
Γ
\sqsubset
... f is an antiderivative of g.
$\ldots \mathrm{g}$ is an antiderivative of f .
... f is the indefinite integral of g .
... g is the indefinite integral of f.

Answers

16.1
a) $\quad \int x^{2} d x=\frac{x^{3}}{3}+C$
b) $\quad \int x^{3} d x=\frac{x^{4}}{4}+C$
c) $\quad \int x^{-5} d x=-\frac{1}{4 x^{4}}+C$
d) $\int \frac{1}{x^{2}} d x=-\frac{1}{x}+C$
e) $\quad \int \frac{1}{x^{4}} d x=-\frac{1}{3 x^{3}}+C$
f) $\quad \int 4 d x=4 x+C$
g) $\quad \int(-7) d x=-7 x+C$
h) $\quad \int e^{x} d x=e^{x}+C$
i) $\quad \int e^{3 x} d x=\frac{1}{3} e^{3 x}+C$
j) $\int e^{-x} d x=-e^{-x}+C$
$16.2 \quad$ a) $\quad \int f(x) d x=\int x^{5} d x=\frac{x^{6}}{6}+C$
b) $\quad \int f(x) d x=\int 3 x^{2} d x=x^{3}+C$
c) $\quad \int f(x) d x=\int\left(x^{3}+2 x^{2}-5\right) d x=\frac{x^{4}}{4}+\frac{2 x^{3}}{3}-5 x+C$
d) $\quad \int f(x) d x=\int\left(\frac{1}{2} x^{5}-\frac{2}{3 x^{2}}\right) d x=\frac{x^{6}}{12}+\frac{2}{3 x}+C$
e) $\quad \int f(x) d x=\int\left(\frac{1}{2} x^{3}-2 x^{2}+4 x-5\right) d x=\frac{x^{4}}{8}-\frac{2 x^{3}}{3}+2 x^{2}-5 x+C$
f) $\quad \int f(x) d x=\int\left(x^{10}-\frac{1}{2} x^{3}-x\right) d x=\frac{x^{11}}{11}-\frac{x^{4}}{8}-\frac{x^{2}}{2}+C$
16.3
a) $\quad \mathrm{F}_{1}(\mathrm{x})=\frac{10 \mathrm{x}^{3}}{3}+\frac{\mathrm{x}^{2}}{2}+3$
$F_{2}(x)=\frac{10 x^{3}}{3}+\frac{x^{2}}{2}-1$
b) $\quad \mathrm{F}_{1}(\mathrm{x})=\frac{\mathrm{x}^{4}}{4}+\frac{3 \mathrm{x}^{2}}{2}+\mathrm{x}-7$
$\mathrm{F}_{2}(\mathrm{x})=\frac{\mathrm{x}^{4}}{4}+\frac{3 \mathrm{x}^{2}}{2}+\mathrm{x}-100$

Hints:

- First, determine the indefinite integral of f.
- Then, determine the value of the integration constant such that the stated conditions are fulfilled.
16.4 a) $f(x)=x^{3}-25 x^{2}+250 x+500$
b) $\quad f(x)=x^{3}-25 x^{2}+250 x+1500$
16.5 a) $\quad f^{\prime}(x)=x^{2}-x+2$
b) $\quad f(x)=\frac{x^{3}}{3}-\frac{x^{2}}{2}+2 x-\frac{17}{6}$
16.6 $C(x)=x^{2}+100 x+200$

Hints:

- First integrate the marginal cost function $C^{\prime}(x) \Rightarrow C(x)=x^{2}+100 x+C(C \in \mathbb{R})$
- Determine the integration constant C using the fact that $C(0)=200$ CHF $\Rightarrow C=200$
16.7 $C(x)=2 x^{2}+2 x+80$
16.8 $\mathrm{C}(30)=3750 \mathrm{CHF}$

Hint:

- First, determine the cost function $C(x) \Rightarrow C(x)=2 x^{2}+40 x+750$.
a) $\quad P(x)=-4 x^{2}+24 x-20$

Hints:

- Determine the cost and revenue functions $C(x)$ and $R(x)$

$$
\Rightarrow \mathrm{C}(\mathrm{x})=\frac{3}{2} \mathrm{x}^{2}+20 \mathrm{x}+20, \mathrm{R}(\mathrm{x})=44 \mathrm{x}-\frac{5}{2} \mathrm{x}^{2}
$$

- Then, determine the profit function $\mathrm{P}(\mathrm{x})$.
b) $\quad \mathrm{x}=3$

Hints:

- Determine the local maxima of the profit function $\mathrm{P}(\mathrm{x})$.
- Check if one of the local maxima is the global maximum.
16.10 a) $C(x)=2 x^{2}+100 x+1800$

Hints:

- First, determine the average cost function $\overline{\mathrm{C}}(\mathrm{x}) \Rightarrow \overline{\mathrm{C}}(\mathrm{x})=2 \mathrm{x}+\frac{1800}{\mathrm{x}}+\mathrm{C}_{1}$
- Then, determine the cost function $\mathrm{C}(\mathrm{x})$.
b) $\quad \mathrm{P}=3200 \mathrm{CHF}$ is the global maximum profit at $\mathrm{x}=50$ units.

Hints:

- First, determine the revenue function $R(x) \Rightarrow R(x)=300 x$
- Then, determine the profit function $P(x) \Rightarrow P(x)=-2 x^{2}+200 x-1800$
- Determine the local maxima of the profit function $\mathrm{P}(\mathrm{x})$.
- Check if one the local maxima is the global maximum.
$16.11 \quad$ a) $\quad 2^{\text {nd }}$ statement
b) $\quad 3^{\text {rd }}$ statement
c) $\quad 2^{\text {nd }}$ statement

