Exercises 15 Applications of differential calculus Local/Global maxima/minima, points of inflection

Objectives

- be able to determine the local maxima and minima of a function.
- be able to determine the points of inflection of a function.
- be able to determine the global maximum and the global minimum of a cost, revenue, and profit function.
- be able to determine the global minimum of an average cost, average revenue, and average profit function.

Problems

15.1 For each function, determine ...
i) $\quad \ldots$ all local maxima and minima.
ii) $\quad .$. all points of inflection.
a) $\quad f(x)=x^{2}-4$
b) $\quad f(x)=-8 x^{3}+12 x^{2}+18 x$
c) $\quad s(t)=t^{4}-8 t^{2}+16$
d) $\quad f(x)=x e^{-x}$
e) * $\quad f(x)=\left(1-e^{-2 x}\right)^{2}$
f) * $\quad \mathrm{V}(\mathrm{r})=-\mathrm{D}\left(\frac{2 \mathrm{a}}{\mathrm{r}}-\frac{\mathrm{a}^{2}}{\mathrm{r}^{2}}\right) \quad(\mathrm{D}>0, \mathrm{a}>0)$
15.2 If the total profit (in CHF) for a commodity is

$$
P(x)=2000 x+20 x^{2}-x^{3}
$$

where x is the number of items sold, determine the level of sales, x, that maximises profit, and find the maximum profit.
Hints:

- First, find the local maxima.
- Then, check if one of the local maxima is the global maximum.
15.3 If the total cost (in 100 CHF) for a service concerning a tourism event is given by

$$
C(x)=\frac{1}{4} x^{2}+4 x+100
$$

where x represents the extent of the service, what value of x will result in a minimum average cost? Determine the minimum average cost.
15.4 Suppose that the production capacity for a certain commodity cannot exceed 30. If the total profit (in CHF) for this company is

$$
P(x)=4 x^{3}-210 x^{2}+3600 x
$$

where x is the number of units sold, determine the number of items that will maximise profit.
15.5 (see next page)
15.5 Suppose the annual profit for a store (in 1000 CHF) is given by

$$
\mathrm{P}(\mathrm{x})=-0.1 \mathrm{x}^{3}+3 \mathrm{x}^{2}
$$

where x is the number of years past 2010. If this model is accurate, determine the point of inflection for the profit.
15.6 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a) If f has a local maximum at $\mathrm{x}=\mathrm{x}_{0}$ it can be concluded that

... $f\left(x_{0}\right)>f(x)$ for any $x \neq x_{0}$
... $f\left(x_{0}\right)>f(x)$ for any $x>x_{0}$
... $f\left(x_{0}\right)>f(x)$ for any $x<x_{0}$
$\ldots f\left(x_{0}\right)>f(x)$ for all x which are in a certain neighbourhood of x_{0}
b) If $\mathrm{f}\left(\mathrm{x}_{0}\right)<0, \mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=0$, and $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{0}\right) \neq 0$, it can be concluded that f has ...

$$
\begin{aligned}
& \text { } \quad \text {.. no local minimum at } \mathrm{x}=\mathrm{x}_{0} \\
& \square \quad \text {... no local maximum at } \mathrm{x}=\mathrm{x}_{0} \\
& \square \quad \text {... no point of inflection at } \mathrm{x}=\mathrm{x}_{0} \\
& \square \quad \text {... a point of inflection at } \mathrm{x}=\mathrm{x}_{0}
\end{aligned}
$$

c) The global maximum of a function ...

■ \quad... is always a local maximum.

- ... can be a local minimum.
- $\quad \begin{aligned} & \text {... can be a local maximum. }\end{aligned}$
... always exists.

Answers

15.1 a) $f(x)=x^{2}-4$

$f^{\prime}(x)=2 x$
$f^{\prime \prime}(x)=2$
$\mathrm{f}^{\prime \prime \prime}(\mathrm{x})=0$
i) $\quad \mathrm{f}^{\prime}(\mathrm{x})=0$ at $\mathrm{x}_{1}=0$
$\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{1}\right)=2>0 \quad \Rightarrow \quad$ local minimum at $\mathrm{x}_{1}=0$ no local maximum
ii) $\quad f^{\prime \prime}(x)=2 \neq 0$ for all $x \quad \Rightarrow \quad$ no point of inflection
b) $\quad f(x)=-8 x^{3}+12 x^{2}+18 x$

$f^{\prime}(x)=-24 x^{2}+24 x+18$
$f^{\prime \prime}(x)=-48 x+24$
$\mathrm{f}^{\prime \prime \prime}(\mathrm{x})=-48$
i) $\quad \mathrm{f}^{\prime}(\mathrm{x})=0$ at $\mathrm{x}_{1}=-\frac{1}{2}$ and $\mathrm{x}_{2}=\frac{3}{2}$

$$
\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{1}\right)=48>0 \quad \Rightarrow \quad \text { local minimum at } \mathrm{x}_{1}=-\frac{1}{2}
$$

$$
\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{2}\right)=-48<0 \quad \Rightarrow \quad \text { local maximum at } \mathrm{x}_{2}=\frac{3^{2}}{2}
$$

ii) $\quad f^{\prime \prime}(\mathrm{x})=0$ at $\mathrm{x}_{3}=\frac{1}{2}$

$$
\mathrm{f}^{\prime \prime \prime}\left(\mathrm{x}_{3}\right)=-48 \neq 0 \quad \Rightarrow \quad \text { point of inflection at } \mathrm{x}_{3}=\frac{1}{2}
$$

c) $\mathrm{s}(\mathrm{t})=\mathrm{t}^{4}-8 \mathrm{t}^{2}+16$

$s^{\prime}(t)=4 t^{3}-16 t$
$s^{\prime \prime}(\mathrm{t})=12 \mathrm{t}^{2}-16$
$s^{\prime \prime \prime}(\mathrm{t})=24 \mathrm{t}$
i) $\quad \mathrm{s}^{\prime}(\mathrm{t})=0$ at $\mathrm{t}_{1}=0, \mathrm{t}_{2}=-2$, and $\mathrm{t}_{3}=2$

$$
\begin{array}{lll}
\mathrm{s}^{\prime \prime}\left(\mathrm{t}_{1}\right)=-16<0 & \Rightarrow & \text { local maximum at } \mathrm{t}_{1}=0 \\
\mathrm{~s}^{\prime \prime}\left(\mathrm{t}_{2}\right)=32>0 & \Rightarrow & \text { local minimum at } \mathrm{t}_{2}=-2 \\
\mathrm{~s}^{\prime \prime}\left(\mathrm{t}_{3}\right)=32>0 & \Rightarrow & \text { local minimum at } \mathrm{t}_{3}=2
\end{array}
$$

ii) $\quad s^{\prime \prime}(\mathrm{t})=0$ at $\mathrm{t}_{4}=-\frac{2}{\sqrt{3}}$ and $\mathrm{t}_{5}=\frac{2}{\sqrt{3}}$

$$
\begin{array}{lll}
\mathrm{s}^{\prime \prime \prime}\left(\mathrm{t}_{4}\right)=-\frac{48}{\sqrt{3}} \neq 0 & \Rightarrow & \text { point of inflection at } \mathrm{t}_{4}=-\frac{2}{\sqrt{3}} \\
\mathrm{~s}^{\prime \prime \prime}\left(\mathrm{t}_{5}\right)=\frac{48}{\sqrt{3}} \neq 0 & \Rightarrow & \text { point of inflection at } \mathrm{t}_{5}=\frac{2}{\sqrt{3}}
\end{array}
$$

d) $\quad f(x)=x e^{-x}$

$f^{\prime}(x)=e^{-x}-x e^{-x}=(1-x) e^{-x}$
$f^{\prime \prime}(x)=-e^{-x}-(1-x) e^{-x}=(x-2) e^{-x}$
$f^{\prime \prime \prime}(x)=e^{-x}-(x-2) e^{-x}=(3-x) e^{-x}$
i) $\quad \mathrm{f}^{\prime}(\mathrm{x})=0$ at $\mathrm{x}_{1}=1$

$$
\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{1}\right)=-\frac{1}{\mathrm{e}}<0 \quad \Rightarrow \quad \text { local maximum at } \mathrm{x}_{1}=1
$$

no local minimum
ii) $\quad \mathrm{f}^{\prime \prime}(\mathrm{x})=0$ at $\mathrm{x}_{2}=2$

$$
\mathrm{f}^{\prime \prime \prime}\left(\mathrm{x}_{2}\right)=\frac{1}{\mathrm{e}^{2}} \neq 0 \quad \Rightarrow \quad \text { point of inflection at } \mathrm{x}_{2}=2
$$

e) * $f(x)=\left(1-e^{-2 x}\right)^{2}=1-2 e^{-2 x}+e^{-4 x}$

$f^{\prime}(x)=4\left(e^{-2 x}-e^{-4 x}\right)$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=8\left(-\mathrm{e}^{-2 \mathrm{x}}+2 \mathrm{e}^{-4 \mathrm{x}}\right)$
$\mathrm{f}^{\prime \prime \prime}(\mathrm{x})=16\left(\mathrm{e}^{-2 \mathrm{x}}-4 \mathrm{e}^{-4 \mathrm{x}}\right)$
i) $\quad f^{\prime}(\mathrm{x})=0$ at $\mathrm{x}_{1}=0$
$\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{1}\right)=8>0 \quad \Rightarrow \quad$ local minimum at $\mathrm{x}_{1}=0$
no local maximum
ii) $\quad \mathrm{f}^{\prime \prime}(\mathrm{x})=0$ at $\mathrm{x}_{2}=\frac{\ln (2)}{2}=0.34 \ldots$

$$
\mathrm{f}^{\prime \prime \prime}\left(\mathrm{x}_{2}\right)=-8 \neq 0 \quad \Rightarrow \quad \text { point of inflection at } \mathrm{x}_{2}=0.34 \ldots
$$

f) * $\quad \mathrm{V}^{\prime}(\mathrm{r})=-\mathrm{D}\left(-\frac{2 \mathrm{a}}{\mathrm{r}^{2}}+\frac{2 \mathrm{a}^{2}}{\mathrm{r}^{3}}\right)=\frac{2 \mathrm{aD}}{\mathrm{r}^{2}}\left(1-\frac{\mathrm{a}}{\mathrm{r}}\right)$
$V^{\prime \prime}(r)=-D\left(\frac{4 a}{r^{3}}-\frac{6 a^{2}}{r^{4}}\right)=\frac{2 a D}{r^{3}}\left(\frac{3 a}{r}-2\right)$
$\mathrm{V}^{\prime \prime \prime}(\mathrm{r})=-\mathrm{D}\left(-\frac{12 \mathrm{a}}{\mathrm{r}^{4}}+\frac{24 \mathrm{a}^{2}}{\mathrm{r}^{5}}\right)=\frac{12 a \mathrm{D}}{\mathrm{r}^{4}}\left(1-\frac{2 \mathrm{a}}{\mathrm{r}}\right)$
i) $\quad \mathrm{V}^{\prime}(\mathrm{r})=0$ at $\mathrm{r}_{1}=\mathrm{a}$

$$
\mathrm{V}^{\prime \prime}\left(\mathrm{r}_{1}\right)=\frac{2 \mathrm{D}}{\mathrm{a}^{2}}>0 \quad \Rightarrow \quad \text { local minimum at } \mathrm{r}_{1}=\mathrm{a}
$$

no local maximum
ii) $\quad \begin{aligned} & \mathrm{V}^{\prime \prime}(\mathrm{r})=0 \text { at } \mathrm{r}_{2}=\frac{3 \mathrm{a}}{2} \\ & \mathrm{~V}^{\prime \prime \prime}\left(\mathrm{r}_{2}\right)=-\frac{64 \mathrm{D}}{81 \mathrm{a}^{3}} \neq 0\end{aligned}$
$\Rightarrow \quad$ point of inflection at $\mathrm{r}_{2}=\frac{3 \mathrm{a}}{2}$
15.2 (Sole) local maximum at $\mathrm{x}_{1}=\frac{100}{3} \rightarrow 33$ or 34
$\mathrm{P}(33)=51^{\prime} 843 \mathrm{CHF}$
$P(34)=51$ '816 CHF
$\mathrm{P}(\mathrm{x})<\mathrm{P}\left(\mathrm{x}_{1}\right)$ if $\mathrm{x} \neq \mathrm{x}_{1}$ as there is no local minimum
$\Rightarrow \mathrm{P}=51^{\prime} 843 \mathrm{CHF}$ is the global maximum profit at $\mathrm{x}=33$.
15.3 $\bar{C}(x)=\frac{C(x)}{x}=\frac{1}{4} x+4+\frac{100}{x}$
$\overline{\mathrm{C}}(\mathrm{x})$ has a (sole) local minimum at $\mathrm{x}_{1}=20$.
$\overline{\mathrm{C}}(20)=1400 \mathrm{CHF}$
$\overline{\mathrm{C}}(\mathrm{x})>\overline{\mathrm{C}}\left(\mathrm{x}_{1}\right)$ if $\mathrm{x} \neq \mathrm{x}_{1}$ as there is no local maximum.
$\Rightarrow \overline{\mathrm{C}}=1400$ CHF is the global minimum average cost at $\mathrm{x}=20$.
15.4 $\mathrm{P}(\mathrm{x})$ has a local maximum at $\mathrm{x}_{1}=15$ and a local minimum at $\mathrm{x}_{2}=20$.
$\mathrm{P}\left(\mathrm{x}_{1}\right)=20^{\prime} 250 \mathrm{CHF}$
$\mathrm{P}(\mathrm{x})<\mathrm{P}\left(\mathrm{x}_{1}\right)$ if $\mathrm{x}<\mathrm{x}_{1}$ as there is no local minimum on the interval $\mathrm{x}<\mathrm{x}_{1}$. $\mathrm{P}(30)=27^{\prime} 000 \mathrm{CHF}>20^{\prime} 250 \mathrm{CHF}(!)$
$\Rightarrow \mathrm{P}=27^{\prime} 000 \mathrm{CHF}$ is the global maximum profit at the endpoint $\mathrm{x}=30$.
15.5 $\mathrm{P}(\mathrm{x})$ has a point of inflection at $\mathrm{x}_{1}=10$.
$\mathrm{P}(10)=200$
\Rightarrow point of inflection (10|200), i.e. when $x=10$ (in the year 2020) and $\mathrm{P}=200^{\prime} 000$ CHF
$15.6 \quad$ a) $\quad 4^{\text {th }}$ statement
b) $\quad 3^{\text {rd }}$ statement
c) $\quad 3^{\text {rd }}$ statement

