Exercises 13 Derivative

Derivative (rate of change), derivative (derived function) of constant/power/exponential functions

Objectives

- be able to estimate a derivative (rate of change) out of the graph of a function.
- be able to state the derivative (rate of change) of a constant and a linear function.
- be able to determine the derivative (derived function) of a constant and a linear function.
- be able to determine the derivative (derived function) of a basic power and a basic exponential function.
- be able to determine a derivative (rate of change) of a basic power and a basic exponential function.

Problems

13.1 The graph of a function f ist given as follows:

Estimate the derivative (rate of change) $f'(x_0)$ at the given position x_0 :

- a) $x_0 = -1$
- b) $x_0 =$
- c) $x_0 = 1$
- d) $x_0 = -2$

Hints:

- Draw the tangent to the graph of f at the given position x_0 .
- Choose any two points on the tangent, and estimate their coordinates.
- Determine the slope of the tangent out of the estimated coordinates of the two points.

Tourism, Mathematics, Thomas Borer

For each of the following functions f: $\mathbb{R} \to \mathbb{R}$, $x \mapsto y = f(x) = ...$

- i) ... draw the graph of f.
- ii) ... state the derivative (rate of change) $f'(x_0)$ at the given position x_0 .
- a) f(x) = 3

$$x_0 = 2$$

b) $f(x) = c \ (c \in \mathbb{R})$

any $x_0 \in \mathbb{R}$

c) f(x) = 2x - 3

 $x_0 = 4$

d) $f(x) = mx + q \ (m \in \mathbb{R} \setminus \{0\}, q \in \mathbb{R})$ any $x_0 \in \mathbb{R}$

Hint:

- If the graph of a function f is a straight line, the derivative (rate of change) $f'(x_0)$ is the slope of that straight line, i.e $f'(x_0)$ has the same value at each position x_0 , and therefore does not depend on x_0 .

13.3 Determine f'(x):

a)
$$f(x) = 3$$

$$b) f(x) = 0$$

c)
$$f(x) = -1$$

$$d) f(x) = x^3$$

e)
$$f(x) = x^4$$

$$f(x) = x^5$$

g)
$$f(x) = x^{17}$$

h)
$$f(x) = x^{200}$$

i)
$$f(x) = x^{100'001}$$

$$j) f(x) = x^{-1}$$

k)
$$f(x) = x^{-2}$$

1)
$$f(x) = x^{-17}$$

$$f(x) = \frac{1}{x}$$

$$f(x) = \frac{1}{x^3}$$

o)
$$f(x) = \frac{1}{x^{99}}$$

$$p) f(x) = 3^x$$

$$q) f(x) = 5^x$$

r)
$$f(x) = \left(\frac{2}{3}\right)^x$$

Determine the derivative (rate of change) $f'(x_0)$ of the function f at the indicated position x_0 :

a) f(x) = x

i)
$$x_0 = 0$$

ii)
$$x_0 = 1$$

iii)
$$x_0 = -2$$

$$b) f(x) = x^5$$

i)
$$x_0 = 0$$

ii)
$$x_0 = 2$$

iii)
$$x_0 = -\frac{2}{3}$$

c)
$$f(x) = x^{-4}$$

i)
$$x_0 = -1$$

ii)
$$x_0 = -\frac{4}{3}$$

iii)
$$x_0 = 0$$

d)
$$f(x) = \left(\frac{2}{3}\right)^x$$

i)
$$x_0 = 0$$

ii)
$$x_0 =$$

iii)
$$x_0 = -2$$

13.5 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.

a) The derivative (rate of change) of a function f at the position x_0 is a ...

... real number.
... function.
... tangent.
... graph.

b) (see next page)

b)	The derivative (derived function) f' of a function f is a	
		real number.
		function.
		tangent.
		graph.
c)	$f'(x_0)$ is the slope of the	
		secant through the points $(0 0)$ and $(x_0 f(x_0))$. secant through the points $(x_0+\Delta x f(x_0+\Delta x))$ and $(x_0 f(x_0))$. tangent to the graph of f through $(x_0 f(x_0))$. tangent to the graph of f' through $(x_0 f(x_0))$.

Answers

- 13.1 a) $f'(-1) \approx 0$
- b) $f'(0) \approx 2$
- c) $f'(1) \approx \frac{3}{2}$
- d) $f'(-2) \approx -\frac{5}{3}$
- 13.2 a) i) ..
 - ii) f'(2) = 0
 - b) i) ...
 - ii) $f'(x_0) = 0$
 - c) i) ...
 - ii) f'(4) = 2
 - d) i) ...
 - ii) $f'(x_0) = m$
- 13.3 a) f'(x) = 0
- b) f'(x) = 0
- c) f'(x) = 0

- d) $f'(x) = 3x^2$
- e) $f'(x) = 4x^3$
- f) $f'(x) = 5x^4$

- g) $f'(x) = 17x^{16}$
- h) $f'(x) = 200x^{199}$
- i) $f'(x) = 100'001x^{100'000}$

- j) $f'(x) = -x^{-2}$
- k) $f'(x) = -2x^{-3}$
- 1) $f'(x) = -17x^{-18}$

- m) $f'(x) = -\frac{1}{x^2}$
- n) $f'(x) = -\frac{3}{x^4}$
- o) $f'(x) = -\frac{99}{x^{100}}$

- p) $f'(x) = 3^x \ln(3)$
- q) $f'(x) = 5^x \ln(5)$
- r) $f'(x) = \left(\frac{2}{3}\right)^x \ln\left(\frac{2}{3}\right)$

- 13.4 a) f'(x) = 1
 - i) f'(0) = 1
- ii) f'(1) = 1
- iii) f'(-2) = 1

- b) $f'(x) = 5x^4$
 - i) f'(0) = 0
- ii) f'(2) = 80
- iii) $f'(-\frac{2}{3}) = \frac{80}{81}$

- c) $f'(x) = -\frac{4}{x^5}$
 - i) f'(-1) = 4
- ii) $f'(-\frac{4}{3}) = \frac{243}{256}$
- iii) f'(0) is not defined (division by zero)

- d) $f'(x) = \left(\frac{2}{3}\right)^x \ln\left(\frac{2}{3}\right)$
 - i) $f'(0) = \ln\left(\frac{2}{3}\right)$
- ii) $f'(1) = \frac{2}{3} \ln(\frac{2}{3})$
- iii) $f'(-2) = \frac{9}{4} \ln(\frac{2}{3})$

- 13.5 a) 1st statement
 - b) 2nd statement
 - c) 3rd statement