Exercises 3 Function Domain, codomain, range, graph

Objectives

- understand what a function is.
- be able to judge whether a given relation is a function.
- be able to determine the range of a given function.
- be able to determine values of a given function.

Problems

- 3.1 Which of the following relations are functions? Explain your answer.
 - a)

b)

c)

d)

 e) D = set of all courses in the FHGR Tourism bachelor programme C = set of all FHGR lecturers
 f: D → C, c ↦ l = f(c) = lecturer of course c 3.2

3.3

3.4

f)	$D = \{1991, 1992, \dots, 2000, 2001\}$ C = set of all human beings aged between 20 and 30 f: D \rightarrow C, y \mapsto p = f(y) = person who was born in the year y						
g)	D = set of all human beings aged between 20 and 30 C = $\{1991, 1992,, 2000, 2001\}$ f: D \rightarrow C, p \mapsto y = f(p) = year of birth of person p						
h)	f: $\mathbb{R} \to \mathbb{R}, x \mapsto y = f(x) = x^2$						
i)	f: $\mathbb{R}^+ \to \mathbb{R}$, $x \mapsto y = f(x) =$ number whose square is x						
	Notice: - \mathbb{R}^+ is the set of all positive real numbers, i.e. $\mathbb{R}^+ = \{x: x \in \mathbb{R} \text{ and } x > 0\}.$						
j)	f: ℝ·	$\rightarrow \mathbb{R}, t \mapsto b = t$	f(t) = bank a	ccount balance	at time t		
Deter	rmine the	range R of the	e functions b	elow:			
a)	D = {January, February, March,, December} C = {A, B, C,, Z} f: D \rightarrow C, m \mapsto <i>l</i> = f(m) = initial letter of month m						
b)	 D = set of all neighbouring countries of Switzerland C = set of all European cities c: D → C, x ↦ y = c(x) = capital of neighbouring country x 						
c)	function f in problem 3.1 g)						
d)	function f in problem 3.1 h)						
a)	f: $\mathbb{R} \to \mathbb{R}, x \mapsto f(x) = x^3 - x$						
	Determine the following values:						
	i)	f(1)	ii)	f(-2)	iii)	f(a)	
	iv)	$f(b^2)$	v)	f(a - b)	vi)	$f(x^3 - x)$	
b)	g: $\mathbb{R} \setminus \{-1\} \to \mathbb{R}, x \mapsto g(x) = \frac{x^2}{x+1}$						
	Determine the following values:						
	i)	g(2)	ii)	g(-3)	iii)	g(a)	
	iv)	$g(b^2)$	v)	g(a - b)	vi)	$g\left(\frac{x^2}{x+1}\right)$	
(see 1	next page)					

3.4 The graph of a function f ist given as follows:

- a) State the value of f(-1).
- b) Estimate the value of f(2).
- c) For what values of x is f(x) = 2?
- d) Estimate the values of x such that f(x) = 0.
- e) State the domain D of f.
- f) State the range R of f.
- 3.5 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
 - a) The range of the function f: $\{x: x \in \mathbb{R} \text{ and } x \ge 4\} \rightarrow \mathbb{R}, x \mapsto y = f(x) = \sqrt{x 4}, \text{ is the set } ...$

$$\label{eq:constraint} \begin{array}{|c|c|c|} & \dots & \{x \colon x \in \mathbb{R} \text{ and } x \geq 4\} \\ \hline & & \dots & \{y \colon y \in \mathbb{R} \text{ and } y \geq 4\} \\ \hline & & \dots & \mathbb{R} \\ \hline & & \dots & \mathbb{R}_0^+ \end{array}$$

b) f cannot be a function if ...

... the domain of f contains more elements than the codomain of f.

- ... at least one element of the domain of f has more than one image.
- c) If the range of a function contains as many elements as the domain, it can be concluded that ...
 - ... the range is the same set as the domain.
 - ... the codomain contains as many elements as the domain.
 - ... each element of the codomain is also an element of the range.
 - ... no element of the range is associated to more than one element of the domain.

Answers

1 1115 11	015					
3.1	a)	o function o element (instead of exactly one element) of C is associated to one of the elements of D.				
	b)	nction				
	c)	no function Two elements (instead of exactly one element) of C are associated to one of the elements of D.				
	d)	nction				
	e)	no function More than one element (instead of exactly one element) of C are associated to some elements of D.				
	f)	no function Many elements (instead of exactly one element) of C are associated to each element of D.				
	g)	function				
	h)	function				
	i)	no function Two elements (instead of exactly one element) of \mathbb{R} are associated to each element of \mathbb{R}^+ .				
	j)	function				
3.2	a)	$R = \{A, D, F, J, M, N, O, S\}$				
	b)	R = {Berlin, Vienna, Vaduz, Rome, Paris}				
	c)	R = C				
	d)	2o+				
		Notice: - \mathbb{R}_0^+ is the set of all positive real numbers, including zero, i.e. $\mathbb{R}_0^+ = \{x: x \in \mathbb{R} \text{ and } x \ge 0\}.$				
3.3	a)	i) $f(1) = 1^3 - 1 = 0$				
		ii) $f(-2) = (-2)^3 - (-2) = -6$				
		iii) $f(a) = a^3 - a$				
		iv) $f(b^2) = (b^2)^3 - b^2 = b^6 - b^2$				
		v) $f(a - b) = (a - b)^3 - (a - b) = a^3 - 3a^2b + 3ab^2 - b^3 - a + b$				
		vi) $f(x^3 - x) = (x^3 - x)^3 - (x^3 - x) = x^9 - 3x^7 + 3x^5 - 2x^3 + x$				
	b)	i) $g(2) = \frac{2^2}{2+1} = \frac{4}{3}$				
		ii) $g(-3) = \frac{(-3)^2}{-3+1} = -\frac{9}{2}$				
		iii) $g(a) = \frac{a^2}{a+1}$				
		iv) $g(b^2) = \frac{(b^2)^2}{b^2 + 1} = \frac{b^4}{b^2 + 1}$				
		v) $g(a-b) = \frac{(a-b)^2}{(a-b)+1} = \frac{a^2 - 2ab + b^2}{a-b+1}$				
		$\left(\begin{array}{c} x^{2} \end{array} \right)$				

vi)
$$g\left(\frac{x^2}{x+1}\right) = \frac{\left(\frac{x^2}{x+1}\right)^2}{\left(\frac{x^2}{x+1}\right)+1} = \frac{x^4}{x^3+2x^2+2x+1}$$

- 3.4 a) f(-1) = -2
 - b) $f(2) \approx 2.8$
 - c) $x_1 = -3, x_2 = 1$
 - d) $x_1 \approx -2.5, x_2 \approx 0.3$
 - e) $D = \{x: x \in \mathbb{R} \text{ and } -3 \le x \le 3\} = [-3,3]$
 - f) $R = \{y: y \in \mathbb{R} \text{ and } -2 \le y \le 3\} = [-2,3]$
- 3.5 a) 4^{th} statement

c) 4th statement