Exercises 2 Numbers Number sets, intervals, absolute value

Objectives

- know the definition and elements of natural numbers, integers, rational numbers, and real numbers.
- know and understand what an open, half-open, and closed interval is.
- know and understand what the absolute value of a real number is.
- be able to perform basic operations with real numbers.

Problems

2.1	D : 1	1	each staten		C 1
/	L Jecide	wnerner	each staten	nent is trile	or taise.

a)
$$4 \in \mathbb{N}$$
 b) $-\frac{14}{7} \in \mathbb{Z}$ c) $\sqrt{2} \in \mathbb{Q}$ d) $\sqrt{9} \in \mathbb{N}$ e) $\sqrt{9} \in \mathbb{Q}$ f) $\sqrt{9} \in \mathbb{R}$

g)
$$1.67854 \in \mathbb{Q} \qquad \qquad \text{h)} \qquad 1.67\overline{854} \in \mathbb{Q} \qquad \qquad \text{i)} \qquad \mathbb{N} \subset \mathbb{Z}$$

$$\mathbb{Z}\subseteq\mathbb{Q} \qquad \qquad \mathrm{k)} \qquad \mathbb{Q}\subset\mathbb{R} \qquad \qquad \mathrm{l)} \qquad \mathbb{R}\setminus\mathbb{Z}=\mathbb{N}$$

2.2 Determine the following sets:

a)
$$\mathbb{Z} \setminus \mathbb{N}$$
 b) $\mathbb{Z} \cup \mathbb{N}$ c) $\mathbb{Z} \cap \mathbb{N}$ d) $\mathbb{Q} \cap (\mathbb{R} \setminus \mathbb{Q})$ e) $\mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q})$ f) $(\mathbb{Q} \setminus \mathbb{Z}) \cap \mathbb{N}$

2.3 You will find a pdf-file with scanned pages of the textbook Harshbarger/Reynolds* on Moodle: > Additional Materials > Algebraic Concepts (Harshbarger/Reynolds) (pages 2 to 55 of chapter "0 Algebraic Concepts" and pages A1 to A5)

Go to section "0.2 The Real Numbers" (pages 9 to 15).

- a) Study the theory (pages 9 to 13).
- b) Do the odd-numbered exercises 1 to 45 (pages 13 and 14).

2.4 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.

a)	$\mathbb{N} \cup \mathbb{Z} = \mathbb{Q}$
u)	$\mathbb{Q}\setminus\mathbb{Z}=\mathbb{N}$
	$\mathbb{Q} \cap \mathbb{R} = \mathbb{Q}$
	$\mathbb{Z}\setminus\mathbb{N}=\{-1,-2,-3,\ldots\}$
b)	$\mathbb{N} = [1, \infty)$
	$3 \in (3,4)$
	$[3,4] \cup (3,4) = (3,4)$
	$[3,4] \setminus (3,4) = \{3,4\}$

c) (see next page)

^{*}Harshbarger, R.J., Reynolds, J.J.: Mathematical Applications for the Management, Life, and Social Sciences; Houghton Mifflin Company, Boston / New York 2007, 8th edition, ISBN 978-0-618-73162-6

c)	Assume that x is a rational number. Therefore, it can be concluded that x is		
		a real number.	
		an integer.	
		a fraction where both numerator and denominator are natural numbers.	
		a natural number.	

Answers

- 2.1 a) true
- b) true

c) false

d) true

e) true

f) true

g) true

h) true

i) true

j) true

k) true

l) false

- 2.2 a) $\mathbb{Z} \setminus \mathbb{N} = \{0, -1, -2, -3, ...\}$
 - b) $\mathbb{Z} \cup \mathbb{N} = \mathbb{Z}$
 - c) $\mathbb{Z} \cap \mathbb{N} = \mathbb{N}$
 - d) $\mathbb{Q} \cap (\mathbb{R} \setminus \mathbb{Q}) = \{\}$
 - e) $\mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$
 - f) $(\mathbb{Q} \setminus \mathbb{Z}) \cap \mathbb{N} = \{\}$
- 2.3 see Harshbarger/Reynolds (page A1)

Note

- Only answers of the odd-numbered exercises (1, 3, 5, ...) are available.

- 2.4 a) 3rd statement
 - b) 4th statement
 - c) 1st statement