Exercises 2 Numbers
 Number sets, intervals, absolute value

Objectives

- know the definition and elements of natural numbers, integers, rational numbers, and real numbers.
- know and understand what an open, half-open, and closed interval is.
- know and understand what the absolute value of a real number is.
- be able to perform basic operations with real numbers.

Problems

2.1 Decide whether each statement is true or false:
a) $\quad 4 \in \mathbb{N}$
b) $\quad-\frac{14}{7} \in \mathbb{Z}$
c) $\quad \sqrt{2} \in \mathbb{Q}$
d) $\quad \sqrt{9} \in \mathbb{N}$
e) $\quad \sqrt{9} \in \mathbb{Q}$
f) $\quad \sqrt{9} \in \mathbb{R}$
g) $\quad 1.67854 \in \mathbb{Q}$
h) $\quad 1.67 \overline{854} \in \mathbb{Q}$
i) $\quad \mathbb{N} \subset \mathbb{Z}$
j) $\quad \mathbb{Z} \subseteq \mathbb{Q}$
k) $\quad \mathbb{Q} \subset \mathbb{R}$

1) $\quad \mathbb{R} \backslash \mathbb{Z}=\mathbb{N}$
2.2 Determine the following sets:
a) $\quad \mathbb{Z} \backslash \mathbb{N}$
b) $\quad \mathbb{Z} \cup \mathbb{N}$
c) $\quad \mathbb{Z} \cap \mathbb{N}$
d) $\quad \mathbb{Q} \cap(\mathbb{R} \backslash \mathbb{Q})$
e) $\quad \mathbb{Q} \cup(\mathbb{R} \backslash \mathbb{Q})$
f) $\quad(\mathbb{Q} \backslash \mathbb{Z}) \cap \mathbb{N}$
2.3 You will find a pdf-file with scanned pages of the textbook Harshbarger/Reynolds* on Moodle:
> Additional Materials > Algebraic Concepts (Harshbarger/Reynolds)
(pages 2 to 55 of chapter "0 Algebraic Concepts" and pages A1 to A5)
Go to section "0.2 The Real Numbers" (pages 9 to 15).
a) Study the theory (pages 9 to 13).
b) Do the odd-numbered exercises 1 to 45 (pages 13 and 14).
*Harshbarger, R.J., Reynolds, J.J.: Mathematical Applications for the Management, Life, and Social Sciences; Houghton Mifflin Company, Boston / New York 2007, 8th edition, ISBN 978-0-618-73162-6
2.4 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a)

$$
\begin{aligned}
& \mathbb{N} \cup \mathbb{Z}=\mathbb{Q} \\
& \mathbb{Q} \backslash \mathbb{Z}=\mathbb{N} \\
& \mathbb{Q} \cap \mathbb{R}=\mathbb{Q} \\
& \mathbb{Z} \backslash \mathbb{N}=\{-1,-2,-3, \ldots\}
\end{aligned}
$$

b)

$$
\mathbb{N}=[1, \infty)
$$

$$
3 \in(3,4)
$$

$$
[3,4] \cup(3,4)=(3,4)
$$

$$
[3,4] \backslash(3,4)=\{3,4\}
$$

c) (see next page)
c) Assume that x is a rational number. Therefore, it can be concluded that x is ...
... a real number.
... an integer.
... a fraction where both numerator and denominator are natural numbers.
... a natural number.

Answers

2.1 a) true
b) true
c) false
d) true
e) true
f) true
g) true
h) true
i) true
j) true
k) true

1) false
$2.2 \quad$ a) $\mathbb{Z} \backslash \mathbb{N}=\{0,-1,-2,-3, \ldots\}$
b) $\quad \mathbb{Z} \cup \mathbb{N}=\mathbb{Z}$
c) $\quad \mathbb{Z} \cap \mathbb{N}=\mathbb{N}$
d) $\quad \mathbb{Q} \cap(\mathbb{R} \backslash \mathbb{Q})=\{ \}$
e) $\quad \mathbb{Q} \cup(\mathbb{R} \backslash \mathbb{Q})=\mathbb{R}$
f) $\quad(\mathbb{Q} \backslash \mathbb{Z}) \cap \mathbb{N}=\{ \}$
2.3 see Harshbarger/Reynolds (page A1)

Note:

- Only answers of the odd-numbered exercises ($1,3,5, \ldots$) are available.
$2.4 \quad$ a) $\quad 3^{\text {rd }}$ statement
b) $\quad 4^{\text {th }}$ statement
c) $\quad 1^{\text {st }}$ statement

