Exercises 1 Sets
 Set, element, empty set, subset, universal set, intersection, union, complement

Objectives

- know and understand what a set, an element of a set, an empty set, a subset, an intersection, a union, and a complement are.
- know and understand the illustration of a set in a Venn diagram.
- be able to perform basic set operations.

Problems

1.1 Look at the sets A, B, and C:

A $=$ Set of all cities of the world
B $=$ Set of all European cities
C $=$ Set of all coastal cities of the world
Find at least five elements of the following sets:
a) $\quad B \cap C$
b) $\quad \mathrm{B} \backslash \mathrm{C}$
c) $\quad \mathrm{C} \backslash \mathrm{B}$
d) $\quad \mathrm{A} \backslash(\mathrm{B} \cup \mathrm{C})$
1.2 You will find a pdf-file with scanned pages of the textbook Harshbarger/Reynolds* on Moodle:
> Additional Materials > Algebraic Concepts (Harshbarger/Reynolds)
(pages 2 to 55 of chapter " 0 Algebraic Concepts" and pages A1 to A5)
Go to section " 0.1 Sets" (pages 2 to 9).
a) Study the theory (pages 2 to 6).
b) Do the odd-numbered exercises 1 to 59 (pages 6 to 9).
*Harshbarger, R.J., Reynolds, J.J.: Mathematical Applications for the Management, Life, and Social Sciences; Houghton Mifflin Company, Boston / New York 2007, 8th edition, ISBN 978-0-618-73162-6
1.3 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a) $\quad \mathrm{A}=$ Set of all cities of the world

B $=$ Set of all European cities
$\begin{array}{ll}\square & A \cap B=A \\ \square & A \cup B=B \\ \square & B \in A \\ \square & B \subset A\end{array}$
b) A is any set.
$\begin{array}{ll}\square & \mathrm{A} \cup\}=\{ \} \\ \square & \mathrm{A} \cap \mathrm{A}=\{ \} \\ \Gamma & \mathrm{A} \backslash \mathrm{A}=\{ \} \\ \Gamma & \mathrm{A} \backslash \mathrm{A}=\mathrm{A}\end{array}$
c) A and B are any sets.

$(A \cup B) \subset(A \cap B)$
$\stackrel{\Gamma}{\Gamma}$

$$
\begin{aligned}
& (A \cap B)=(A \backslash B) \\
& (A \cup B)=(A \backslash B) \cup(B \backslash A) \cup(A \cap B) \\
& (A \cap B)=(A \backslash B) \cup(B \backslash A) \cup(A \cap B)
\end{aligned}
$$

Hint:

- Draw a Venn diagram for each statement.

Answers

1.1 a) $\mathrm{B} \cap \mathrm{C}=\{$ Lisbon, Copenhagen, Barcelona, Naples, Stockholm, ...\}
b) $\quad \mathrm{B} \backslash \mathrm{C}=\{$ London, Paris, Madrid, Berlin, Rome, $\ldots\}$
c) $\quad \mathrm{C} \backslash \mathrm{B}=\{$ Tokyo, San Francisco, Sydney, Rio de Janeiro, Cape Town, ...\}
d) $\quad \mathrm{A} \backslash(\mathrm{B} \cup \mathrm{C})=\{$ Chicago, Mexico City, Nairobi, Beijing, Bogotá, ... $\}$
1.2 see Harshbarger/Reynolds (page A1)

Note:

- Only answers of the odd-numbered exercises $(1,3,5, \ldots)$ are available.
$1.3 \quad$ a) $\quad 4^{\text {th }}$ statement
b) $\quad 3^{\text {rd }}$ statement
c) $\quad 3^{\text {rd }}$ statement

