Exercises 16 Indefinite integral Antiderivative, indefinite integral, coefficient/sum rule

Objectives

- be able to determine an antiderivative and the indefinite integral of a constant, basic power, and basic exponential function.
- be able to apply the coefficient and sum rules to determine the indefinite integral of a function.
- be able to determine the cost, revenue, and profit functions if the marginal cost, marginal revenue, and marginal profit functions are known.

Problems

16.1 Determine the indefinite integrals below:

 $\int x^2 dx$

 $\int x^3 dx$ b)

 $\int x^{-5} dx$ c)

 $\int \frac{1}{x^2} dx$ d)

 $\int \frac{1}{x^4} dx$ e)

f) $\int 4 dx$

 $\int (-7) dx$ g)

 $\int e^x dx$ h)

 $\int e^{3x} dx$ i)

 $\int e^{-x} dx$ j)

Determine the indefinite integral of the following functions f: 16.2

> a) $f(x) = x^5$

 $f(x) = 3x^2$

 $f(x) = x^3 + 2x^2 - 5$

d) $f(x) = \frac{1}{2}x^5 - \frac{2}{3x^2}$

e)

 $f(x) = \frac{1}{2}x^3 - 2x^2 + 4x - 5$ f) $f(x) = x^{10} - \frac{1}{2}x^3 - x$

16.3 Determine the equations of two antiderivatives F₁ and F₂ of f such that the stated conditions are fulfilled.

 $f(x) = 10x^2 + x$ a)

 $F_1(0) = 3$

 $F_2(0) = -1$

 $f(x) = x^3 + 3x + 1$ b)

 $F_1(2) = 5$

 $F_2(4) = -8$

16.4 Suppose that we know the equation of the derivative f' of a function f:

$$f'(x) = 3x^2 - 50x + 250$$

Determine the equation of the function f, if ...

... f(0) = 500.

... f(10) = 2500. b)

16.5 Suppose that we know the equation of the second derivative f " of a function f:

$$f''(x) = 2x - 1$$

Determine the equation of ...

... the first derivative f' such that f'(2) = 4. a)

... the function f such that f'(2) = 4 and f(1) = -1.

- 16.6 If the monthly marginal cost (in CHF) for a product is C'(x) = 2x + 100, with fixed costs amounting to 200 CHF, determine the total cost function for a month.
- 16.7 If the marginal cost (in CHF) for a product is C'(x) = 4x + 2, and the production of 10 units results in a total cost of 300 CHF, determine the total cost function.
- 16.8 If the marginal cost (in CHF) for a product is C'(x) = 4x + 40, and the total cost of producing 25 units is 3000 CHF, what will be the total cost of producing 30 units?
- A firm knows that its marginal cost for a product is C'(x) = 3x + 20, that its marginal revenue is R'(x) = 44 5x, and that the cost of production and sale of 10 units is 370 CHF.
 - a) Determine the profit function P(x).
 - b) How many units will result in a maximum profit?

Hint:

- The revenue R is zero if no unit is sold. Thus, R(0) = 0 CHF.
- 16.10 Suppose that the marginal revenue R'(x) and the derivative of the average cost $\overline{C}'(x)$ are given as follows:

R'(x) = 300

$$\overline{C}$$
'(x) = 2 - $\frac{1800}{x^2}$

The production of 10 units results in a total cost of 3000 CHF.

- a) Determine the total cost function C(x).
- b) How many units will result in a maximum profit? Find the maximum profit.
- 16.11 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.

a)	An antiderivative of a function is a	
		 real number. function. set of functions. graph.
b)	The indefinite integral of a function is a	
		 real number. function. set of functions. graph.
c)	If $f = g'$ then	
		 f is an antiderivative of g. g is an antiderivative of f. f is the indefinite integral of g.

... g is the indefinite integral of f.

Answers

16.1 a)
$$\int x^2 dx = \frac{x^3}{3} + C$$
 b) $\int x^3 dx = \frac{x^4}{4} + C$

c)
$$\int x^{-5} dx = -\frac{1}{4x^4} + C$$
 d) $\int \frac{1}{x^2} dx = -\frac{1}{x} + C$

e)
$$\int \frac{1}{x^4} dx = -\frac{1}{3x^3} + C$$
 f) $\int 4 dx = 4x + C$

g)
$$\int (-7) dx = -7x + C$$
 h) $\int e^x dx = e^x + C$

i)
$$\int e^{3x} dx = \frac{1}{3}e^{3x} + C$$
 j) $\int e^{-x} dx = -e^{-x} + C$

16.2 a)
$$\int f(x) dx = \int x^5 dx = \frac{x^6}{6} + C$$

b)
$$\int f(x) dx = \int 3x^2 dx = x^3 + C$$

c)
$$\int f(x) dx = \int (x^3 + 2x^2 - 5) dx = \frac{x^4}{4} + \frac{2x^3}{3} - 5x + C$$

d)
$$\int f(x) dx = \int \left(\frac{1}{2}x^5 - \frac{2}{3x^2}\right) dx = \frac{x^6}{12} + \frac{2}{3x} + C$$

e)
$$\int f(x) dx = \int \left(\frac{1}{2}x^3 - 2x^2 + 4x - 5\right) dx = \frac{x^4}{8} - \frac{2x^3}{3} + 2x^2 - 5x + C$$

f)
$$\int f(x) dx = \int \left(x^{10} - \frac{1}{2}x^3 - x\right) dx = \frac{x^{11}}{11} - \frac{x^4}{8} - \frac{x^2}{2} + C$$

16.3 a)
$$F_1(x) = \frac{10x^3}{3} + \frac{x^2}{2} + 3$$
 $F_2(x) = \frac{10x^3}{3} + \frac{x^2}{2} - 1$

b)
$$F_1(x) = \frac{x^4}{4} + \frac{3x^2}{2} + x - 7$$
 $F_2(x) = \frac{x^4}{4} + \frac{3x^2}{2} + x - 100$

Hinte.

- First, determine the indefinite integral of f.
- Then, determine the value of the integration constant such that the stated conditions are fulfilled.

16.4 a)
$$f(x) = x^3 - 25x^2 + 250x + 500$$

b)
$$f(x) = x^3 - 25x^2 + 250x + 1500$$

16.5 a)
$$f'(x) = x^2 - x + 2$$

b)
$$f(x) = \frac{x^3}{3} - \frac{x^2}{2} + 2x - \frac{17}{6}$$

16.6
$$C(x) = x^2 + 100x + 200$$

Hints:

- First integrate the marginal cost function $C'(x) \Rightarrow C(x) = x^2 + 100x + C$ ($C \in \mathbb{R}$)
- Determine the integration constant C using the fact that $C(0) = 200 \text{ CHF} \implies C = 200$

16.7
$$C(x) = 2x^2 + 2x + 80$$

16.8
$$C(30) = 3750 \text{ CHF}$$

Hint:

- First, determine the cost function $C(x) \Rightarrow C(x) = 2x^2 + 40x + 750$.

Tourism, Mathematics, Thomas Borer

16.9 a) $P(x) = -4x^2 + 24x - 20$

Hints:

- Determine the cost and revenue functions C(x) and R(x) $\Rightarrow C(x) = \frac{3}{2}x^2 + 20x + 20$, $R(x) = 44x \frac{5}{2}x^2$
- Then, determine the profit function P(x).
- b) x = 3

Hints:

- Determine the relative maximum of the profit function P(x).
- Check if the relative maximum is the absolute maximum.
- 16.10 a) $C(x) = 2x^2 + 100x + 1800$

Hints:

- First, determine the average cost function $\overline{C}(x) \Rightarrow \overline{C}(x) = 2x + \frac{1800}{x} + C_1$
- Then, determine the cost function C(x).
- b) P = 3200 CHF is the absolute maximum profit at x = 50 units.

Hints:

- First, determine the revenue function $R(x) \Rightarrow R(x) = 300x$
- Then, determine the profit function $P(x) \Rightarrow P(x) = -2x^2 + 200x 1800$
- Determine the relative maximum of the profit function P(x).
- Check if the relative maximum is the absolute maximum.
- 16.11 a) 2nd statement
 - b) 3rd statement
 - c) 2nd statement