Exercises 2 Numbers Number sets, intervals, absolute value

Objectives

- know the definition and elements of natural numbers, integers, rational numbers, and real numbers.
- know and understand what an open, half-open, and closed interval is.
- know and understand what the absolute value of a real number is.
- be able to perform basic operations with real numbers.

Problems

2	1	D '1	1 41	1 4 4		ue or false
,		Llecide	whether	each stat	ement is tr	THE OF TAICE

a)
$$4 \in \mathbb{N}$$

b)
$$-\frac{14}{7} \in \mathbb{Z}$$

c)
$$\sqrt{2} \in \mathbb{Q}$$

d)
$$\sqrt{9} \in \mathbb{N}$$

e)
$$\sqrt{9} \in \mathbb{Q}$$

f)
$$\sqrt{9} \in \mathbb{R}$$

$$g) 1.67854 \in \mathbb{Q}$$

h)
$$1.67\overline{854} \in \mathbb{Q}$$

i)
$$\mathbb{N} \subset \mathbb{Z}$$

$$j) \hspace{1cm} \mathbb{Z} \subseteq \mathbb{Q}$$

$$k) \qquad \mathbb{Q} \subset \mathbb{R}$$

1)
$$\mathbb{R} \setminus \mathbb{Z} = \mathbb{N}$$

2.2 Determine the following sets:

a) $\mathbb{Z} \setminus \mathbb{N}$

b) $\mathbb{Z} \cup \mathbb{N}$

c) $\mathbb{Z} \cap \mathbb{N}$

d) $\mathbb{Q} \cap (\mathbb{R} \setminus \mathbb{Q})$

e) $\mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q})$

f) $(\mathbb{Q} \setminus \mathbb{Z}) \cap \mathbb{N}$

2.3 You will find a pdf-file with scanned pages of the textbook Harshbarger/Reynolds* on Moodle:

> Documents > Algebraic Concepts (Harshbarger/Reynolds) (pages 2 to 55 of chapter "0 Algebraic Concepts" and pages A1 to A5)

Go to section "0.2 The Real Numbers" (pages 9 to 15).

to to section 0.2 The Real Numbers (pages 9 to

- a) Study the theory (pages 9 to 13).
- b) Do the exercises (pages 13 to 15).

2.4 Decide which statements are true or false. Put a mark into the corresponding box.

In each problem a) to c), exactly one statement is true.

 $\mathbb{Q} \cap \mathbb{R} = \mathbb{Q}$

 $\mathbb{Z}\setminus\mathbb{N}=\{-1,-2,-3,...\}$

b) $\mathbb{N} = [1, \infty)$ $3 \in (3,4)$

 $[3,4] \cup (3,4) = (3,4)$

 $[3,4] \setminus (3,4) = \{3,4\}$

c) (see next page)

^{*}Harshbarger, R.J., Reynolds, J.J.: Mathematical Applications for the Management, Life, and Social Sciences; Houghton Mifflin Company, Boston / New York 2007, 8th edition, ISBN 978-0-618-73162-6

c)	Assume that x is a rational number. Therefore, it can be concluded that x is				
		a real number.			
		an integer.			
		a fraction where both numerator and denominator are natural numbers.			
		a natural number.			

Answers

2.1 a) true

b) true

c) false

d) true

e) true

f) true

g) true

h) true

i) true

j) true

k) true

l) false

- 2.2 a) $\mathbb{Z} \setminus \mathbb{N} = \{0, -1, -2, -3, ...\}$
 - b) $\mathbb{Z} \cup \mathbb{N} = \mathbb{Z}$
 - c) $\mathbb{Z} \cap \mathbb{N} = \mathbb{N}$
 - d) $\mathbb{Q} \cap (\mathbb{R} \setminus \mathbb{Q}) = \{\}$
 - e) $\mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$
 - f) $(\mathbb{Q} \setminus \mathbb{Z}) \cap \mathbb{N} = \{\}$
- 2.3 see Harshbarger/Reynolds (page A1)

Note

- Only answers of the odd-numbered exercises (1, 3, 5, ...) are available.

- 2.4 a) 3rd statement
 - b) 4th statement
 - c) 1st statement