
Derivative

Function f

f: $D \to \mathbb{R}$ where $D \subseteq \mathbb{R}$ $x \mapsto y = f(x)$

Ex.: $f(x) = 24\sqrt{x+1} - 2x - 60$

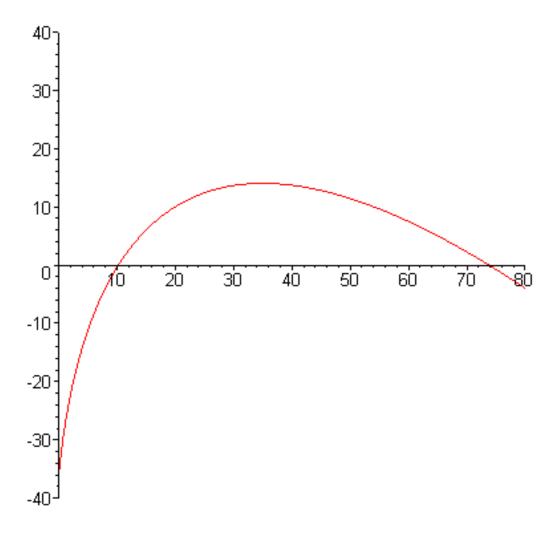
What do we want to know?

Slope of the tangent to the graph of the function f at a certain point $A(x_0 | f(x_0))$.

Why do we want to know the slope?

- increasing (slope > 0), decreasing (slope < 0)
- relative maximum/minimum (slope = 0)
- concavity (concave up if slope increases, concave down if slope decreases), points of inflection

Applications in economics


- tendency of costs/revenue/profit
- maximum/minimum of costs/revenue/profit
- marginal costs/revenue/profit (change of costs/revenue/profit if number x of items increases by one)

Definition

The slope of the tangent to the graph of f at the point $A(x_0 | f(x_0))$ is called the **derivative** or the **rate of change of f at** x_0 , denoted $f'(x_0)$.

How can we determine the slope?

The slope of the **secant** through the points $A(x_0 \mid f(x_0))$ and $B(x_0 + \Delta x \mid f(x_0 + \Delta x))$ tends towards the slope of the **tangent** at $A(x_0 \mid f(x_0))$ as Δx tends towards 0.

Ex.: f:
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f(x) = x^2$
 $f'(x_0) = 2x_0$

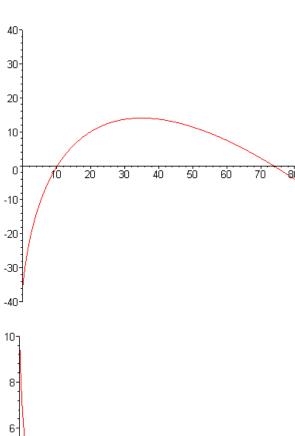
Definition

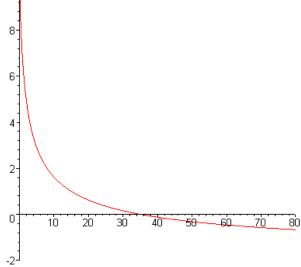
Suppose that the rate of change $f'(x_0)$ exists for all $x_0 \in D_1$, where $D_1 \subseteq D$.

The function f'

 $f': D_1 \to \mathbb{R}$

 $x \mapsto y = f'(x)$


is called the derivative of the function f.


Ex. 1: f:
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f(x) = x^2$

f':
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f'(x) = 2x$

Ex. 2: f: D
$$\to \mathbb{R}$$

 $x \mapsto y = f(x) = 24\sqrt{x+1} - 2x - 60$

$$\begin{array}{ll} D \rightarrow \mathbb{R} & f \text{': } D_1 \rightarrow \mathbb{R} \\ x \mapsto \ y = f(x) = 24\sqrt{x+1} \text{--} 2x \text{--} 60 & x \mapsto \ y = f \text{'}(x) = \frac{12}{\sqrt{x+1}} \text{--} 2 \end{array}$$

