Exercises 7 Quadratic function and equations Ouadratic function

Objectives

- be able to graph a quadratic function out of the vertex form of its equation.
- be able to determine the position of the vertex of a parabola out of the vertex form of the equation of the corresponding quadratic function.
- be able to convert the vertex form of the equation of a quadratic function into the general form.
- know, understand, and be able to apply the method of completing the square.
- be able to convert the general form of the equation of a quadratic function into the vertex form.

Problems

7.1 Look at the easiest possible quadratic function:

f:
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f(x) = x^2$

- a) Establish a table of values of f for the interval $-4 \le x \le 4$.
- b) Draw the graph of f in the interval $-4 \le x \le 4$ into a Cartesian coordinate system.
- 7.2 Generally, the equation of a quadratic function can be written in the so-called vertex form below:

$$\begin{array}{ll} f \colon D \, \to \, \mathbb{R} & (D \subseteq \mathbb{R}) \\ x \, \mapsto \, y = f(x) = a(x-u)^2 + v & (a \in \mathbb{R} \backslash \{0\}, \, u \in \mathbb{R}, \, v \in \mathbb{R}) \end{array}$$

In problems a) to d) ...

- i) ... sketch the graphs of the functions f_0 , f_1 , and f_2 into one coordinate system.
- ii) ... describe the influence of the parameters u, v, and a on the graph of the quadratic function.
- a) Variation of parameter u (in all three cases below: a = 1, v = 0)

$$\begin{array}{ll} u=0: & y=f_0(x)=x^2 \\ u=2: & y=f_1(x)=(x-2)^2 \\ u=-1: & y=f_2(x)=(x+1)^2 \end{array}$$

b) Variation of parameter v (in all three cases below: a = 1, u = 0)

$$\begin{array}{lll} v=0: & y=f_0(x)=x^2 \\ v=3: & y=f_1(x)=x^2+3 \\ v=-2: & y=f_2(x)=x^2-2 \end{array}$$

c) Variation of parameter a (in all three cases below: u = 0, v = 0)

$$\begin{array}{ll} a=1: & y=f_0(x)=x^2 \\ a=2: & y=f_1(x)=2x^2 \\ a=-2: & y=f_2(x)=-2x^2 \end{array}$$

d) Variation of parameter a (in all three cases below: u = 0, v = 0)

$$\begin{array}{ll} a=1: & y=f_0(x)=x^2 \\ a=\frac{1}{2}: & y=f_1(x)=\frac{1}{2}\,x^2 \\ a=-\frac{1}{2}: & y=f_2(x)=-\frac{1}{2}\,x^2 \end{array}$$

- 7.3 For each quadratic function f: $\mathbb{R} \to \mathbb{R}$, $x \mapsto y = f(x)$ in a) to h) ...
 - i) ... state the parameters a, u, and v.
 - ii) ... state the coordinates of the vertex of the graph.
 - iii) ... state whether the parabola, i.e. the graph of the function, opens upwards or downwards.
 - iv) ... graph the function.

a)
$$y = f(x) = (x + 2)^2$$

b)
$$y = f(x) = -3x^2$$

c)
$$y = f(x) = 2x^2 - 1$$

d)
$$y = f(x) = -(x-3)^2 + 4$$

e)
$$y = f(x) = \frac{1}{2}(x+3)^2 + 2$$

f)
$$y = f(x) = -2(x - 1)^2 + 5$$

g)
$$y = f(x) = \frac{5}{2} - \left(x - \frac{1}{2}\right)^2$$

h)
$$y = f(x) = -\frac{1}{2} - 3(2 - x)^2$$

7.4 * The equation of a quadratic function can be written in the two forms below:

$$y = f(x) = ax^2 + bx + c$$

general form

$$y = f(x) = a(x - u)^2 + v$$

vertex form

- a) Verify that the vertex form of the equation can always be converted into the general form.
- b) Assume that the values of the parameters a, u, and v are known.

 Use the result in a) to determine the values of the parameters b and c out of a, u, and v.
- 7.5 The equation of a quadratic function f is written in the vertex form. Determine the general form of the equation:

a)
$$y = f(x) = 2(x - 3)^2 + 4$$

b)
$$y = f(x) = -(x+2)^2 - 3$$

c)
$$y = f(x) = x^2 + 5$$

d)
$$y = f(x) = -3(x - 4)^2$$

7.6 Convert the given equation of a quadratic function into the vertex form by completing the square:

a)
$$y = f(x) = 3x^2 - 12x + 8$$

b)
$$y = f(x) = x^2 + 6x$$

c)
$$y = f(x) = x^2 - 2x + 1$$

d)
$$y = f(x) = 2x^2 + 12x + 18$$

e)
$$y = f(x) = -2x^2 - 6x - 2$$

f)
$$y = f(x) = x^2 + 1$$

g)
$$y = f(x) = -\frac{1}{2}x^2 + 2x - 2$$

h)
$$y = f(x) = -4x^2 + 24x - 43$$

i)
$$y = f(x) = 2(x-3)(x+4)$$

j)
$$y = f(x) = x + 3 - (x + \frac{1}{2})x$$

- 7.7 For the graphs of the quadratic functions $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto y = f(x)$ in a) to f) ...
 - i) ... determine the coordinates of the vertex.
 - ii) ... state whether the parabola opens upwards or downwards.

a)
$$y = f(x) = 2x^2 + 12x + 20$$

b)
$$y = f(x) = \frac{1}{2}x^2 + \frac{3}{2}x + \frac{1}{2}$$

c)
$$y = f(x) = 12x - 3x^2 - 11$$

d)
$$y = f(x) = x(-0.2x + 1.2) - 2.8$$

e)
$$y = f(x) = \frac{17 + 12x + 2x^2}{4}$$

f)
$$y = f(x) = 7x(3-x) - 13.25$$

7.8	Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.	
	a)	The graph of a quadratic function
		always intersects the x-axis in two points opens downwards if it has no point in common with the x-axis.
		touches the x-axis if there is only one vertex is always a parabola.
	b)	f is a linear function, and g is a quadratic function. It can be concluded that the graphs of f and g
		have no points in common.
		intersect only if the slope of f is not equal to zero.
		cannot have more than two points in common.
	c)	have at least one point in common. The vertex form of the equation of a quadratic function
	ς,	is equal to the general form if the vertex of the graph is on the y-axis.
		can be obtained from the general form by multiplying out all the terms does not exist if the graph opens downwards.
		only depends on the position of the vertex.

Answers

- 7.1 see theory
- 7.2 see theory
- 7.3 a) i) a = 1, u = -2, v = 0
 - ii) V(-2|0)
 - iii) parabola opens upwards
 - iv) ..
 - b) i) a = -3, u = 0, v = 0
 - ii) V(0|0)
 - iii) parabola opens downwards
 - iv) ...
 - c) i) a = 2, u = 0, v = -1
 - ii) V(0|-1)
 - iii) parabola opens upwards
 - iv) ...
 - d) i) a = -1, u = 3, v = 4
 - ii) V(3|4)
 - iii) parabola opens downwards
 - iv) ...
 - e) i) $a = \frac{1}{2}, u = -3, v = 2$
 - ii) V(-3|2)
 - iii) parabola opens upwards
 - iv) ...
 - f) i) a = -2, u = 1, v = 5
 - ii) V(1|5)
 - iii) parabola opens downwards
 - iv) ..
 - g) i) $a = -1, u = \frac{1}{2}, v = \frac{5}{2}$
 - ii) $V\left(\frac{1}{2}|\frac{5}{2}\right)$
 - iii) parabola opens downwards
 - iv) ...

h) i)
$$a = -3, u = 2, v = -\frac{1}{2}$$

- ii) $V\left(2|-\frac{1}{2}\right)$
- iii) parabola opens downwards
- iv) ...

7.4 * a)
$$y = f(x) = a(x - u)^2 + v = ... = ax^2 - 2aux + au^2 + v = ax^2 + (-2au)x + (au^2 + v)$$

Hints

- Expand the term $(x u)^2$.
- Simplify the whole expression.

b)
$$b = -2au$$
$$c = au^2 + v$$

Hint

- Compare the resulting expression in a) with the general form $ax^2 + bx + c$.

7.5 a)
$$y = f(x) = 2x^2 - 12x + 22$$

b)
$$y = f(x) = -x^2 - 4x - 7$$

c)
$$y = f(x) = x^2 + 5$$

Notice:

- This is both the general and the vertex form of the equation.

d)
$$y = f(x) = -3x^2 + 24x - 48$$

7.6 a)
$$y = f(x) = 3(x-2)^2 - 4$$
 b) $y = f(x) = (x+3)^2 - 9$

c)
$$y = f(x) = (x - 1)^2$$
 d) $y = f(x) = 2(x + 3)^2$

e)
$$y = f(x) = -2\left(x + \frac{3}{2}\right)^2 + \frac{5}{2}$$
 f) $y = f(x) = x^2 + 1$

g)
$$y = f(x) = -\frac{1}{2}(x-2)^2$$
 h) $y = f(x) = -4(x-3)^2 - 7$

i)
$$y = f(x) = 2\left(x + \frac{1}{2}\right)^2 - \frac{49}{2}$$
 j) $y = f(x) = -\left(x - \frac{1}{4}\right)^2 + \frac{49}{16}$

7.7 a) i)
$$V(-3|2)$$
 b) i) $V\left(-\frac{3}{2}|-\frac{5}{8}\right)$

- ii) parabola opens upwards ii) parabola opens upwards
- c) i) V(2|1) d) i) V(3|-1)
 - ii) parabola opens downwards ii) parabola opens downwards
- e) i) $V(-3|-\frac{1}{4})$ f) i) $V(\frac{3}{2}|\frac{5}{2})$
 - ii) parabola opens upwards ii) parabola opens downwards
- 7.8 a) 4th statement
 - b) 3rd statement
 - c) 1st statement