Exercises 2 Numbers Number sets, intervals, absolute value

Objectives

- know the definition and elements of the set of real numbers, rational numbers, integers, natural numbers.
- know and understand what an open, half-open, closed interval is.
- know and understand what the absolute value of a real number is.
- be able to perform basic operations with real numbers.

Problems

2.1 Decide whether each statement is true or false:

a)	$4 \in \mathbb{N}$	b)	$-\frac{14}{7} \in \mathbb{Z}$	c)	$\sqrt{2} \in \mathbb{Q}$
d)	$\sqrt{9} \in \mathbb{N}$	e)	$\sqrt{9} \in \mathbb{Q}$	f)	$\sqrt{9} \in \mathbb{R}$
g)	$1.67854 \in \mathbb{Q}$	h)	$1.67\overline{854} \in \mathbb{Q}$	i)	$\mathbb{N} \subset \mathbb{Z}$
j)	$\mathbb{Z} \subseteq \mathbb{Q}$	k)	$\mathbb{Q} \subset \mathbb{R}$	1)	$\mathbb{R} \setminus \mathbb{Z} = \mathbb{N}$

2.2 Determine the following sets:

a)	$\mathbb{Z} \setminus \mathbb{N}$	b)	$\mathbb{Z} \cup \mathbb{N}$	c)	$\mathbb{Z}\cap\mathbb{N}$
d)	$\mathbb{Q} \cap (\mathbb{R} \setminus \mathbb{Q})$	e)	$\mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q})$	f)	$(\mathbb{Q}\setminus\mathbb{Z})\cap\mathbb{N}$

2.3 Harshbarger/Reynolds*: Chapter 0 (Algebraic Concepts), Section 0.2 (p. 9-15) (Scanned pages 2-55 and A1-A5 in file "Algebraic Concepts.pdf" on Moodle)

a) Theory (p. 9-13) b) Exercises (p. 13-15)

*Harshbarger, R.J. and Reynolds, J.J.: Mathematical Applications for the Management, Life, and Social Sciences; Houghton Mifflin Company, Boston / New York 2007, 8th edition, ISBN 978-0-618-73162-6

2.4 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.

a)
$$\begin{array}{c|c} \mathbb{N} \cup \mathbb{Z} = \mathbb{Q} \\ \mathbb{Q} \setminus \mathbb{Z} = \mathbb{N} \\ \mathbb{Q} \cap \mathbb{R} = \mathbb{Q} \\ \mathbb{Q} \setminus \mathbb{N} = \{-1, -2, -3, ...\} \end{array}$$

- b) Assume that x is a rational number. Therefore, it can be concluded that x is ...
 - ... a real number.
 ... an integer.
 ... a fraction where both numerator and denominator are natural numbers.
 ... a natural number.
 N = [1,∞)
 2 = (2,4)

$$\begin{array}{cccc}
 & 3 \in (3,4) \\
 & & [3,4] \cup (3,4) = (3,4) \\
 & & [3,4] \setminus (3,4) = \{3,4\}
\end{array}$$

c)

Answers

2.1	a)	true	b)	true	c)	false
	d)	true	e)	true	f)	true
	g)	true	h)	true	i)	true
	j)	true	k)	true	l)	false

2.2 a) $\mathbb{Z} \setminus \mathbb{N} = \{0, -1, -2, -3, ...\}$

- b) $\mathbb{Z} \cup \mathbb{N} = \mathbb{Z}$
- c) $\mathbb{Z} \cap \mathbb{N} = \mathbb{N}$
- d) $\mathbb{Q} \cap (\mathbb{R} \setminus \mathbb{Q}) = \{\}$
- e) $\mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$
- f) $(\mathbb{Q} \setminus \mathbb{Z}) \cap \mathbb{N} = \{\}$
- 2.3 see Harshbarger/Reynolds: Chapter 0, Algebraic Concepts (Scanned pages 2-55 and A1-A5 in file "Algebraic Concepts.pdf" on Moodle)
- 2.4 a) 3^{rd} statement
 - b) 1st statement
 - c) 4th statement