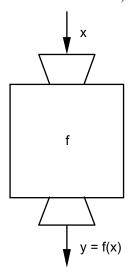
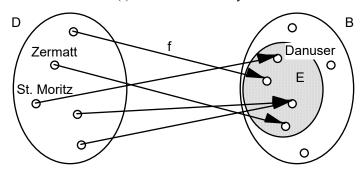

Function

Definition and examples

Def.: A function f is a rule that assigns to each element x in a set D exactly one element y in a set B.



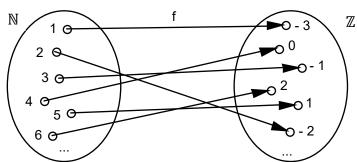
The function f maps the set D onto the set B.


f:
$$D \rightarrow B$$

 $x \mapsto y = f(x)$ ("f of x")

The set D is the **domain**, the set B is the **codomain**, and the set E is the **range** of the function f.

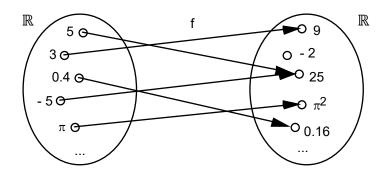
The element y is the **image** of the element x. or (if D and B are number sets): y is the **value** of f at x.



- Ex.: 1. D = set of all Swiss holiday resorts
 - B = set of all human beings
 - $f: D \rightarrow B$
 - $r \mapsto d = f(r) = director of holiday resort r in 2000$

- 2. D = set of all countries of the world
 - B = set of all cities of the world
 - f: $D \rightarrow B$
 - $a \mapsto b = f(a) = capital of country a$
- 3. Cable car company
 - $D = \mathbb{N}$ (= set of natural numbers)
 - $B = \mathbb{R}$ (= set of real numbers)
 - f: $D \rightarrow B$
 - $n \mapsto r = f(n) = revenue$ (e.g. in Euros) when n tickets are sold
- 4. $D = \mathbb{N}$
 - $\mathbf{B}=\mathbb{Z}$
 - f: $\mathbb{N} \to \mathbb{Z}$

$$n \mapsto y = f(n) = n - 4$$

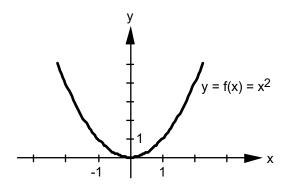

- 5. $D = B = \mathbb{R}$
 - p: $\mathbb{R} \to \mathbb{F}$

$$\mathbb{R} \to \mathbb{R}$$

$$x \mapsto y = p(x) = \frac{x^3 - 3}{2x^2 + 1}$$

Representation of a function

Arrow diagram


Table of values

X	У
1	1
3	9
5	25
- 5	25
0.4	0.16

Equation

$$\begin{array}{ccc} f \colon & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & y = f(x) = x^2 \end{array}$$

Graph

