Exercises 16 Indefinite integral Antiderivative, indefinite integral, coefficient/sum rule

Objectives

- be able to determine an antiderivative and the indefinite integral of a constant/basic power/basic exponential function.
- be able to apply the coefficient/sum rule to determine the indefinite integral of a function.
- be able to determine the cost/average cost/revenue/profit function if the marginal cost/average cost/revenue/profit function is known.

Problems

16.1 Determine the indefinite integrals below:

a)	$\int x^3 dx$	b)	$\int x^2 dx$
c)	$\int \frac{1}{x^4} dx$	d)	$\int \frac{1}{x^2} dx$
e)	$\int x^{-5} dx$	f)	∫4 dx
g)	$\int (-7) dx$	h)	$\int e^x dx$
i)	$\int e^{3x} dx$	j)	∫ e ^{-x} dx

16.2 Determine the indefinite integral of the following functions f:

a)
$$f(x) = x^5$$

b) $f(x) = 3x^2$
c) $f(x) = x^3 + 2x^2 - 5$
d) $f(x) = \frac{1}{2}x^5 - \frac{2}{3x^2}$

e) $f(x) = \frac{1}{2}x^3 - 2x^2 + 4x - 5$ f) $f(x) = x^{10} - \frac{1}{2}x^3 - x$

16.3 Find the equations of two antiderivatives F_1 and F_2 of f such that the stated conditions are fulfilled.

a)	$f(x) = 10x^2 + x$	$F_1(0) = 3$	$F_2(0) = -1$
b)	$f(x) = x^3 + 3x + 1$	$F_1(2) = 5$	$F_2(4) = -8$

16.4 Suppose that we know the equation of the derivative f' of a function f:

$$f'(x) = 3x^2 - 50x + 250$$

Determine the equation of the function f, if ...

- a) ... f(0) = 500.
- b) ... f(10) = 2500.

16.5 Suppose that we know the equation of the second derivative f " of a function f:

f''(x) = 2x - 1

Find the equation of ...

- a) ... the first derivative f' such that f'(2) = 4.
- b) ... the function f such that f'(2) = 4 and f(1) = -1.

- 16.6 If the monthly marginal cost (in dollars) for a product is C'(x) = 2x + 100, with fixed costs amounting to \$200, find the total cost function for the month.
- 16.7 If the marginal cost (in dollars) for a product is C'(x) = 4x + 2, and the production of 10 units results in a total cost of \$300, find the total cost function.
- 16.8 If the marginal cost (in dollars) for a product is C'(x) = 4x + 40, and the total cost of producing 25 units is \$3000, what will be the cost of producing 30 units?
- 16.9 A firm knows that its marginal cost for a product is C'(x) = 3x + 20, that its marginal revenue is R'(x) = 44 5x, and that the cost of production and sale of 10 units is \$370.
 - a) Find the profit function P(x).
 - b) How many units will result in a maximum profit?

Hint:

- The revenue R is zero if no unit is sold. Thus, R(0) =\$0.

16.10 Suppose that the marginal revenue R'(x) and the derivative of the average cost $\overline{C}'(x)$ are given as follows:

$$R'(x) = 100$$

 $\overline{C}'(x) = 2 - \frac{1800}{x^2}$

The production of 10 units results in a total cost of \$1000.

- a) Find the total cost function C(x).
- b) How many units will result in a maximum profit? Find the maximum profit.
- 16.11 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
 - a) An antiderivative of a function is a ...
 - ... real number.
 ... function.
 ... set of functions.
 ... graph.
 The indefinite integral of a function is a ...
 ... real number.
 - ... real number.
 - ... function.
 - ... set of functions.
 - _____ ... graph.
 - c) If f = g' then ...
 - ... f is an antiderivative of g.
 - ... g is an antiderivative of f.
 - ... f is the indefinite integral of g.
 - ... g is the indefinite integral of f.

b)

Answers

16.1

a)
$$\int x^3 dx = \frac{x^4}{4} + C$$

b) $\int x^2 dx = \frac{x^3}{3} + C$
c) $\int \frac{1}{x^4} dx = -\frac{1}{3x^3} + C$
d) $\int \frac{1}{x^2} dx = -\frac{1}{x} + C$
e) $\int x^{-5} dx = -\frac{1}{4x^4} + C$
f) $\int 4 dx = 4x + C$
g) $\int (-7) dx = -7x + C$
h) $\int e^x dx = e^x + C$

i)
$$\int e^{3x} dx = \frac{1}{3}e^{3x} + C$$
 j) $\int e^{-x} dx = -e^{-x} + C$

16.2 a)
$$\int f(x) dx = \int x^5 dx = \frac{x^6}{6} + C$$

b)
$$\int f(x) dx = \int 3x^2 dx = x^3 + C$$

c)
$$\int f(x) dx = \int (x^3 + 2x^2 - 5) dx = \frac{x^4}{4} + \frac{2x^3}{3} - 5x + C$$

d)
$$\int f(x) dx = \int \left(\frac{1}{2}x^5 - \frac{2}{3x^2}\right) dx = \frac{x^6}{12} + \frac{2}{3x} + C$$

e)
$$\int f(x) dx = \int \left(\frac{1}{2}x^3 - 2x^2 + 4x - 5\right) dx = \frac{x^4}{8} - \frac{2x^3}{3} + 2x^2 - 5x + C$$

f)
$$\int f(x) dx = \int \left(x^{10} - \frac{1}{2}x^3 - x\right) dx = \frac{x^{11}}{11} - \frac{x^4}{8} - \frac{x^2}{2} + C$$

6

16.3 a)
$$F_1(x) = \frac{10x^3}{3} + \frac{x^2}{2} + 3$$
 $F_2(x) = \frac{10x^3}{3} + \frac{x^2}{2} - 1$
b) $F_1(x) = \frac{x^4}{4} + \frac{3x^2}{2} + x - 7$ $F_2(x) = \frac{x^4}{4} + \frac{3x^2}{2} + x - 100$

Hints:

- First, determine the indefinite integral of f(x).

- Then, find the value of the integration constant such that the stated condition is fulfilled.

16.4 a)
$$f(x) = x^3 - 25x^2 + 250x + 500$$

b) $f(x) = x^3 - 25x^2 + 250x + 1500$

16.5 a)
$$f'(x) = x^2 - x + 2$$

b) $f(x) = \frac{x^3}{3} - \frac{x^2}{2} + 2x - \frac{17}{6}$

16.6 $C(x) = x^2 + 100x + 200$

Hints:

- First integrate the marginal cost function $C'(x) \Rightarrow C(x) = x^2 + 100x + C \ (C \in \mathbb{R})$ - Determine the integration constant C using the fact that $C(0) = \$200 \Rightarrow C = 200$

16.7
$$C(x) = 2x^2 + 2x + 80$$

16.8 C(30) = \$3750

Hint:

- First, determine the cost function $C(x) \Rightarrow C(x) = 2x^2 + 40x + 750$.

16.9	a)	$P(x) = -4x^2 + 24x - 20$
		Hints: - Find the cost and revenue functions $C(x)$ and $R(x) \Rightarrow C(x) = \frac{3}{2}x^2 + 20x + 20$, $R(x) = 44x - \frac{5}{2}x^2$ - Then, determine the profit function $P(x)$.
	b)	x = 3
		Hints:Find the relative maximum of the profit function P(x).Check if the relative maximum is the absolute maximum.
16.10	a)	$C(x) = 2x^2 - 100x + 1800$
		Hints: - First, determine the average cost function $\overline{C}(x) \Rightarrow \overline{C}(x) = 2x + \frac{1800}{x} + C_1$ - Then, determine the cost function C(x).
	b)	P = \$3200 is the absolute maximum profit at $x = 50$ units.
		Hints: - First, determine the revenue function $R(x) \Rightarrow R(x) = 100x$ - Then, find the profit function $P(x) \Rightarrow P(x) = -2x^2 + 200x - 1800$ - Find the relative maximum of the profit function $P(x)$. - Check if the relative maximum is the absolute maximum.
16.11	a)	2 nd statement
	b)	3 rd statement

c) 2nd statement