Exercises 3

Function

Domain, codomain, range, graph

Objectives

- understand what a function is.
- be able to judge whether a given relation is a function.
- be able to determine the range of a given function.
- be able to determine values of a given function.

Problems

3.1 Which of the following relations are functions? Explain your answer.
a)

c)

d)

e) $\quad \mathrm{D}=$ set of all the modules of the HTW Tourism bachelor programme $\mathrm{B}=$ set of all the HTW lecturers
f: $\mathrm{D} \rightarrow \mathrm{B}, \mathrm{m} \mapsto l=\mathrm{f}(\mathrm{m})=$ lecturer of m
f) $\quad \mathrm{D}=\{1987,1988, \ldots, 1996,1997\}$
$\mathrm{B}=$ set of all the human beings aged between 20 and 30
$f: D \rightarrow B, y \mapsto p=f(y)=$ person who was born in the year y
g) $\quad \mathrm{D}=$ set of all the human beings aged between 20 and 30
$\mathrm{B}=\{1987,1988, \ldots, 1996,1997\}$
f: $D \rightarrow B, p \mapsto y=f(p)=$ year of birth of person p
h) $\quad f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto y=f(x)=x^{2}$
i) $\quad f: \mathbb{R}^{+} \rightarrow \mathbb{R}, x \mapsto y=f(x)=$ number whose square is x

Notice:
$-\mathbb{R}^{+}$is the set of all positive real numbers, i.e. $\mathbb{R}^{+}=\{x: x \in \mathbb{R}$ and $x>0\}$.
j) $\quad f: \mathbb{R} \rightarrow \mathbb{R}, t \mapsto b=f(t)=$ bank account balance at time t
3.2 Determine the range E of the functions below:
a) $\quad \mathrm{D}=\{$ January, February, March, ..., December $\}$
$\mathrm{B}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{Z}\}$
$\mathrm{f}: \mathrm{D} \rightarrow \mathrm{B}, \mathrm{m} \mapsto l=\mathrm{f}(\mathrm{m})=$ initial letter of m
b) $\quad \mathrm{D}=$ set of all the neighbouring countries of Switzerland $B=$ set of all the European cities
c: $D \rightarrow B, x \mapsto y=c(x)=$ capital of neighbouring country x
c) function f in problem 3.1 g)
d) function f in problem 3.1 h)
$3.3 \quad$ a) $\quad \mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}, \mathrm{x} \mapsto \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x}$
Determine the following values:
i) $\quad \mathrm{f}(1)$
ii) $\quad \mathrm{f}(-2)$
iv) $\quad f\left(b^{2}\right)$
v) $\quad f(a-b)$
iii) $\quad f(a)$
vi) $\quad f\left(x^{3}-x\right)$
b) $\mathrm{g}: \mathbb{R} \backslash\{-1\} \rightarrow \mathbb{R}, \mathrm{x} \mapsto \mathrm{g}(\mathrm{x})=\frac{\mathrm{x}^{2}}{\mathrm{x}+1}$

Determine the following values:
i)
$\mathrm{g}(2)$
ii) $\quad \mathrm{g}(-3)$
iii) $\quad g(a)$
iv) $\quad g\left(b^{2}\right)$
v) $\quad g(a-b)$
vi) $\quad g\left(\frac{x^{2}}{x+1}\right)$
3.4 The graph of a function f ist given as follows:

a) State the value of $f(-1)$.
b) Estimate the value of $f(2)$.
c) For what values of x is $\mathrm{f}(\mathrm{x})=2$?
d) Estimate the values of x such that $\mathrm{f}(\mathrm{x})=0$.
e) State the domain D of f.
f) State the range E of f.
3.5 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a) The range of the function $f:\{x: x \in \mathbb{R}$ and $x \geq 4\} \rightarrow \mathbb{R}, x \mapsto y=f(x)=\sqrt{x-4}$, is the set \ldots

... $\{x: x \in \mathbb{R}$ and $x \geq 4\}$
... $\{y: y \in \mathbb{R}$ and $y \geq 4\}$
... \mathbb{R}
... \mathbb{R}_{0}^{+}
b) f cannot be a function if ...
... the domain of f is no number set.
... the codomain of f contains more elements than the domain of f.
... the domain of f contains more elements than the codomain of f .
\ldots at least one element of the domain of f has more than one image.
c) If f is such that $f(x)=x$ for all elements x of the domain, it can concluded that \ldots

... the domain of f is the same set as the codomain of f.
... the range of f is the same set as the codomain of f.
... the domain and the codomain of f contain the same number of elements.
... the domain and the range of f contain the same number of elements.

Answers

3.1 a) no function

No element (instead of exactly one element) of B is assigned to one of the elements of D.
b) function
c) no function

Two elements (instead of exactly one element) of B are assigned to one of the elements of D.
d) function
e) no function

More than one element (instead of exactly one element) of B are assigned to some elements of D.
f) no function

Many elements (instead of exactly one element) of B are assigned to each element of D.
g) function
h) function
i) no function

Two elements (instead of exactly one element) of \mathbb{R} are assigned to each element of \mathbb{R}^{+}.
j) function
3.2 a) $E=\{A, D, F, J, M, N, O, S\}$
b) $\quad \mathrm{E}=\{$ Berlin, Vienna, Vaduz, Rome, Paris $\}$
c) $\quad \mathrm{E}=\mathrm{B}$
d) $\quad \mathrm{E}=\mathbb{R}_{0}{ }^{+}$

Notice:
$-\mathbb{R}_{0}{ }^{+}$is the set of all positive real numbers, including zero, i.e. $\mathbb{R}_{0^{+}}=\{x: x \in \mathbb{R}$ and $x \geq 0\}$.
3.3 a) i) $\mathrm{f}(1)=1^{3}-1=0$
ii) $\quad \mathrm{f}(-2)=(-2)^{3}-(-2)=-6$
iii) $\quad f(a)=a^{3}-a$
iv) $\quad f\left(b^{2}\right)=\left(b^{2}\right)^{3}-b^{2}=b^{6}-b^{2}$
v) $\quad f(a-b)=(a-b)^{3}-(a-b)=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}-a+b$
vi) $\quad f\left(x^{3}-x\right)=\left(x^{3}-x\right)^{3}-\left(x^{3}-x\right)=x^{9}-3 x^{7}+3 x^{5}-2 x^{3}+x$
b) i) $g(2)=\frac{2^{2}}{2+1}=\frac{4}{3}$
ii) $g(-3)=\frac{(-3)^{2}}{-3+1}=-\frac{9}{2}$
iii) $\quad g(a)=\frac{a^{2}}{a+1}$
iv) $\quad g\left(b^{2}\right)=\frac{\left(b^{2}\right)^{2}}{b^{2}+1}=\frac{b^{4}}{b^{2}+1}$
v) $\quad g(a-b)=\frac{(a-b)^{2}}{(a-b)+1}=\frac{a^{2}-2 a b+b^{2}}{a-b+1}$
vi) $\quad g\left(\frac{x^{2}}{x+1}\right)=\frac{\left(\frac{x^{2}}{x+1}\right)^{2}}{\left(\frac{x^{2}}{x+1}\right)+1}=\frac{x^{4}}{x^{3}+2 x^{2}+2 x+1}$
$3.4 \quad$ a) $\quad f(-1)=-2$
b) $\quad \mathrm{f}(2) \approx 2.8$
c) $x_{1}=-3, x_{2}=1$
d) $\quad x_{1} \approx-2.5, x_{2} \approx 0.3$
e) $\quad \mathrm{D}=\{\mathrm{x}: \mathrm{x} \in \mathbb{R}$ and $-3 \leq \mathrm{x} \leq 3\}=[-3,3]$
f) $\quad \mathrm{E}=\{\mathrm{y}: \mathrm{y} \in \mathbb{R}$ and $-2 \leq \mathrm{y} \leq 3\}=[-2,3]$
$3.5 \quad$ a) $\quad 4^{\text {th }}$ statement
b) $\quad 4^{\text {th }}$ statement
c) $\quad 4^{\text {th }}$ statement

