Exercises 2 Numbers
 Number sets, intervals, absolute value

Objectives

- know the definition and elements of the set of real numbers, rational numbers, integers, natural numbers.
- know and understand what an open, half-open, closed interval is.
- know and understand what the absolute value of a real number is.
- be able to perform basic operations with real numbers.

Problems

2.1 Decide whether each statement is true or false:
a) $\quad 4 \in \mathbb{N}$
b) $\quad-\frac{14}{7} \in \mathbb{Z}$
c) $\quad \sqrt{2} \in \mathbb{Q}$
d) $\quad \sqrt{9} \in \mathbb{N}$
e) $\quad \sqrt{9} \in \mathbb{Q}$
f) $\quad \sqrt{9} \in \mathbb{R}$
g) $\quad 1.67854 \in \mathbb{Q}$
h) $\quad 1.67 \overline{854} \in \mathbb{Q}$
i) $\quad \mathbb{N} \subset \mathbb{Z}$
j) $\quad \mathbb{Z} \subseteq \mathbb{Q}$
k) $\mathbb{Q} \subset \mathbb{R}$

1) $\quad \mathbb{R} \backslash \mathbb{Z}=\mathbb{N}$
2.2 Determine the following sets:
a) $\quad \mathbb{Z} \backslash \mathbb{N}$
b) $\quad \mathbb{Z} \cup \mathbb{N}$
c) $\quad \mathbb{Z} \cap \mathbb{N}$
d) $\quad \mathbb{Q} \cap(\mathbb{R} \backslash \mathbb{Q})$
e) $\quad \mathbb{Q} \cup(\mathbb{R} \backslash \mathbb{Q})$
f) $\quad(\mathbb{Q} \backslash \mathbb{Z}) \cap \mathbb{N}$
2.3 Harshbarger/Reynolds*: Chapter 0 (Algebraic Concepts), Section 0.2 (p. 9-15)
(Scanned pages 2-55 and A1-A5 in file "Algebraic Concepts.pdf" on Moodle)
a) Theory (p. 9-13)
b) Exercises (p. 13-15)
*Harshbarger, R.J. and Reynolds, J.J.: Mathematical Applications for the Management, Life, and Social Sciences; Houghton Mifflin Company, Boston / New York 2007, 8th edition, ISBN 978-0-618-73162-6
2.4 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a) $\quad \square \quad \mathbb{N} \cup \mathbb{Z}=\mathbb{Q}$
\square
\square
\square
$\mathbb{Q} \backslash \mathbb{Z}=\mathbb{N}$
$\mathbb{Q} \cap \mathbb{R}=\mathbb{Q}$
$\mathbb{Z} \backslash \mathbb{N}=\{-1,-2,-3, \ldots\}$
b) Assume that x is a rational number. Therefore, it can be concluded that x is ...

... a real number.
... an integer.
... a fraction where both numerator and denominator are natural numbers.
... a natural number.
c)$\mathbb{N}=[1, \infty)$
$3 \in(3,4)$
$[3,4] \cup(3,4)=(3,4)$
$[3,4] \backslash(3,4)=\{3,4\}$

Answers

2.1

a)	true	b)	true	c)	false
d)	true	e)	true	f)	true
g)	true	h)	true	i)	true
j)	true	k)	true	l)	false

$2.2 \quad$ a) $\mathbb{Z} \backslash \mathbb{N}=\{0,-1,-2,-3, \ldots\}$
b) $\quad \mathbb{Z} \cup \mathbb{N}=\mathbb{Z}$
c) $\quad \mathbb{Z} \cap \mathbb{N}=\mathbb{N}$
d) $\quad \mathbb{Q} \cap(\mathbb{R} \backslash \mathbb{Q})=\{ \}$
e) $\quad \mathbb{Q} \cup(\mathbb{R} \backslash \mathbb{Q})=\mathbb{R}$
f) $\quad(\mathbb{Q} \backslash \mathbb{Z}) \cap \mathbb{N}=\{ \}$
2.3 see Harshbarger/Reynolds: Chapter 0, Algebraic Concepts
(Scanned pages 2-55 and A1-A5 in file "Algebraic Concepts.pdf" on Moodle)
$2.4 \quad$ a) $\quad 3^{\text {rd }}$ statement
b) $\quad 1^{\text {st }}$ statement
c) $\quad 4^{\text {th }}$ statement

