Exercises 2 Numbers

Number sets, intervals, absolute value

Objectives

- know the definition and elements of the set of real numbers, rational numbers, integers, natural numbers.
- know and understand what an open, half-open, closed interval is.
- know and understand what the absolute value of a real number is.
- be able to perform basic operations with real numbers.

Problem	6

2	1	Decide whether each statement is true or false.
,		The cide whether each statement is trile or talse.

a)
$$4 \in \mathbb{N}$$

b)
$$-\frac{14}{7} \in \mathbb{Z}$$

c)
$$\sqrt{2} \in \mathbb{Q}$$

d)
$$\sqrt{9} \in \mathbb{N}$$

e)
$$\sqrt{9} \in \mathbb{Q}$$

f)
$$\sqrt{9} \in \mathbb{R}$$

$$g) 1.67854 \in \mathbb{Q}$$

h)
$$1.67\overline{854} \in \mathbb{Q}$$

i)
$$\mathbb{N} \subset \mathbb{Z}$$

$$j) \hspace{1cm} \mathbb{Z} \subseteq \mathbb{Q}$$

k)
$$\mathbb{Q} \subset \mathbb{R}$$

1)
$$\mathbb{R} \setminus \mathbb{Z} = \mathbb{N}$$

2.2 Determine the following sets:

a) $\mathbb{Z} \setminus \mathbb{N}$

b) $\mathbb{Z} \cup \mathbb{N}$

c) $\mathbb{Z} \cap \mathbb{N}$

d) $\mathbb{Q} \cap (\mathbb{R} \setminus \mathbb{Q})$

e) $\mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q})$

f) $(\mathbb{Q} \setminus \mathbb{Z}) \cap \mathbb{N}$

2.3 Harshbarger/Reynolds*: Chapter 0 (Algebraic Concepts), Section 0.2 (p. 9-15) (Scanned pages 2-55 and A1-A5 in file "Algebraic Concepts.pdf" on Moodle)

a) Theory (p. 9-13)

b) Exercises (p. 13-15)

2.4 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.

a)	$\mathbb{N} \cup \mathbb{Z} = \mathbb{Q}$
	$\mathbb{Q} \setminus \mathbb{Z} = \mathbb{N}$
	$\mathbb{Q}\cap\mathbb{R}=\mathbb{Q}$
	$\mathbb{Z}\setminus\mathbb{N}=\{-1,-2,-3,\ldots\}$

b) Assume that x is a rational number. Therefore, it can be concluded that x is ...

... a real number.
... an integer.

... a fraction where both numerator and denominator are natural numbers.

... a natural number.

^{*}Harshbarger, R.J. and Reynolds, J.J.: Mathematical Applications for the Management, Life, and Social Sciences; Houghton Mifflin Company, Boston / New York 2007, 8th edition, ISBN 978-0-618-73162-6

Answers

b) true

c) false

d) true

e) true

f) true

g) true

h) true

i) true

j) true

k) true

l) false

- 2.2 a) $\mathbb{Z} \setminus \mathbb{N} = \{0, -1, -2, -3, ...\}$
 - b) $\mathbb{Z} \cup \mathbb{N} = \mathbb{Z}$
 - c) $\mathbb{Z} \cap \mathbb{N} = \mathbb{N}$
 - d) $\mathbb{Q} \cap (\mathbb{R} \setminus \mathbb{Q}) = \{\}$
 - e) $\mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$
 - f) $(\mathbb{Q} \setminus \mathbb{Z}) \cap \mathbb{N} = \{\}$
- 2.3 see Harshbarger/Reynolds: Chapter 0, Algebraic Concepts (Scanned pages 2-55 and A1-A5 in file "Algebraic Concepts.pdf" on Moodle)
- a) 3rd statement
 - b) 1st statement
 - c) 4th statement