Exercises 1

Sets

Set, element, empty set, subset, intersection, union, complement

Objectives

- understand what a set, an element of a set, an empty set, a subset, an intersection, a union, a complement is.
- be able to perform basic set operations.

Problems

1.1 Look at the sets A, B, and C:
$\mathrm{A}=$ Set of all cities of the world
B $=$ Set of all European cities
C $=$ Set of all coastal cities of the world
Find at least four elements of the following sets:
a) $\quad B \cap C$
b) $\quad \mathrm{B} \backslash \mathrm{C}$
c) $\quad \mathrm{C} \backslash \mathrm{B}$
d) $\quad \mathrm{A} \backslash(\mathrm{B} \cup \mathrm{C})$
1.2 Harshbarger/Reynolds*: Chapter 0 (Algebraic Concepts), Section 0.1 (p. 2-9)
(Scanned pages 2-55 and A1-A5 in file "Algebraic Concepts.pdf" on Moodle)
a) Theory (p. 2-6)
b) Exercises (p. 6-9)
*Harshbarger, R.J. and Reynolds, J.J.: Mathematical Applications for the Management, Life, and Social Sciences; Houghton Mifflin Company, Boston / New York 2007, 8th edition, ISBN 978-0-618-73162-6
1.3 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a) A is any set.

b) $\quad \mathrm{A}=$ Set of all cities of the world

B $=$ Set of all European cities

\square	$\mathrm{A} \cap \mathrm{B}=\mathrm{A}$
\square	$\mathrm{A} \cup \mathrm{B}=\mathrm{A}$
\square	$\mathrm{B} \in \mathrm{A}$
\square	$\mathrm{B} \subset \mathrm{A}$

c) A and B are any sets.

$(A \cup B) \subset(A \cap B)$
$(A \cap B)=(A \backslash B)$
$(A \cup B)=(A \backslash B) \cup(B \backslash A) \cup(A \cap B)$
$(A \cap B)=(A \backslash B) \cup(B \backslash A) \cup(A \cap B)$

Answers

1.1 a) $\mathrm{B} \cap \mathrm{C}=\{$ Lisbon, Copenhagen, Barcelona, Naples, Stockholm,...$\}$
b) $\quad \mathrm{B} \backslash \mathrm{C}=\{$ London, Paris, Madrid, Berlin, Rome, \ldots, $\}$
c) $\quad \mathrm{C} \backslash \mathrm{B}=\{$ Tokyo, San Francisco, Sydney, Rio de Janeiro, ... $\}$
d) $\mathrm{A} \backslash(\mathrm{B} \cup \mathrm{C})=\{$ Chicago, Mexico City, Nairobi, Beijing, $\ldots\}$
1.2 see Harshbarger/Reynolds: Chapter 0, Algebraic Concepts
(Scanned pages 2-55 and A1-A5 in file "Algebraic Concepts.pdf" on Moodle)
$1.3 \quad$ a) $\quad 2^{\text {nd }}$ statement
b) $\quad 4^{\text {th }}$ statement
c) $\quad 3^{\text {rd }}$ statement

