Exponential function

Definition

f:	$\begin{array}{l} D \ \rightarrow \ \mathbb{R} \\ x \ \mapsto \ y = f(x) = c \cdot a^x \end{array}$	$ \begin{array}{l} (D \subseteq \mathbb{R}) \\ (a \in \mathbb{R}^+ \setminus \{1\}, c \in \mathbb{R} \setminus \{0\}) \end{array} $
	a > 1: exponential growth a < 1: exponential decay	

Graph

2. Parameter a (in all three cases below: c = 1)

3. Parameter c (in all three cases below: a = 2)

•*f*1 -

Examples

1. Compound interest (exponential **growth**)

$C_n = C_0 \cdot q^n$	$C_0 = initial capital$
	$\tilde{C_n}$ = capital after n compounding periods
	n = number of compounding periods (typically: 1 compounding period = 1 year)
	q = growth factor = 1 + r $(q > 1)$
	$\mathbf{r} = \mathbf{interest}$ rate per compounding period
	Ex.: $C_0 := 1000, r := 2\% = 0.02 \implies q = 1.02 \implies C_n = 1000 \cdot 1.02^n$

2. Consumer price index (exponential **decay**)

$$\begin{split} P(t) &= P_0 \cdot q^t \\ P_0 &= \text{initial purchasing power} \\ P(t) &= \text{purchasing power at time t (typically: t in years)} \\ q &= \text{decay factor} \quad (q < 1) \\ \text{Ex.:} \quad P_0 &:= 100, q := 0.97 \implies P(t) = 100 \cdot 0.97^t \end{split}$$