Exercises 7 Quadratic function and equations Quadratic function

Objectives

- be able to graph a quadratic function out of the vertex form of its equation.
- be able to determine the position of the vertex of a parabola out of the vertex form of the equation of the corresponding quadratic function.
- be able to convert the vertex form of the equation of a quadratic function into the general form.
- know, understand, and be able to apply the method of completing the square.
- be able to convert the general form of the equation of a quadratic function into the vertex form.

Problems

7.1 Look at the easiest case of a quadratic function:

f:
$$\mathbb{R} \to \mathbb{R}$$

x \mapsto y = f(x) = x²

- a) Establish a table of values of f for the interval $-4 \le x \le 4$.
- b) Draw the graph of f in the interval $-4 \le x \le 4$ into a Cartesian coordinate system.
- 7.2 Generally, the equation of a quadratic function can be written in the so-called vertex form below:

$$\begin{array}{ll} f: \ D \ \rightarrow \ \mathbb{R} & (D \subseteq \mathbb{R}) \\ x \ \mapsto \ y = f(x) = a(x-u)^2 + v & (a \in \mathbb{R} \backslash \{0\}, u \in \mathbb{R}, v \in \mathbb{R}) \end{array}$$

In problems a) to d) ...

- i) ... sketch the graphs of the functions f_0 , f_1 , and f_2 into one coordinate system.
- ii) ... describe the influence of the parameters u, v, and a on the graph of the quadratic function.

a)

c)

Variation of parameter u (in al	1 three cases below: $a = 1, v = 0$)
---------------------------------	---------------------------------------

u = 0:	$\mathbf{y} = \mathbf{f}_0(\mathbf{x}) = \mathbf{x}^2$
u = 2:	$y = f_1(x) = (x - 2)^2$
u = -1 :	$y = f_2(x) = (x + 1)^2$

b) Variation of parameter v (in all three cases below: a = 1, u = 0)

$$\begin{array}{ll} v=0: & y=f_0(x)=x^2 \\ v=3: & y=f_1(x)=x^2+3 \\ v=-2: & y=f_2(x)=x^2-2 \end{array}$$

Variation of parameter a (in all three cases below: u = 0, v = 0)

a = 1 :	$y = f_0(x) = x^2$
a = 2:	$y = f_1(x) = 2x^2$
a = -2:	$y = f_2(x) = -2x^2$

d) Variation of parameter a (in all three cases below: u = 0, v = 0) a = 1: $y = f_0(x) = x^2$ $a = \frac{1}{2}$: $y = f_1(x) = \frac{1}{2}x^2$ $a = -\frac{1}{2}$: $y = f_2(x) = -\frac{1}{2}x^2$

- 7.3 For each quadratic function f: $\mathbb{R} \to \mathbb{R}$, $x \mapsto y = f(x)$ in a) to h) ...
 - i) ... state the parameters a, u, and v.
 - ii) ... state the coordinates of the vertex of the graph.
 - iii) ... state whether the parabola, i.e. the graph of the function, opens upwards or downwards.
 - iv) ... graph the function.
 - a) $y = f(x) = (x + 2)^2$ b) $y = f(x) = -3x^2$
 - c) $y = f(x) = 2x^2 1$ d) $y = f(x) = -(x 3)^2 + 4$
 - e) $y = f(x) = \frac{1}{2}(x+3)^2 + 2$ f) $y = f(x) = -2(x-1)^2 + 5$

g)
$$y = f(x) = \frac{5}{2} - \left(x - \frac{1}{2}\right)^2$$
 h) $y = f(x) = -\frac{1}{2} - 3(2 - x)^2$

7.4 The equation of a quadratic function can be written in the two forms below:

$y = f(x) = ax^2 + bx + c$	general form
$y = f(x) = a(x - u)^2 + v$	vertex form

- a) Verify that the vertex form of the equation can always be converted into the general form.
- b) Assume that the values of the parameters a, u, and v are known.Use the result in a) to determine the values of the parameters b and c out of a, u, and v.
- 7.5 The equation of a quadratic function f is written in the vertex form. Determine the general form of the equation:
 - a) $y = f(x) = 2(x 3)^2 + 4$ b) $y = f(x) = -(x + 2)^2 3$
 - c) $y = f(x) = x^2 + 5$ d) $y = f(x) = -3(x - 4)^2$

7.6 Convert the given equation of a quadratic function into the vertex form by completing the square:

a)	$y = f(x) = 3x^2 - 12x + 8$	b)	$y = f(x) = x^2 + 6x$
c)	$y = f(x) = x^2 - 2x + 1$	d)	$y = f(x) = 2x^2 + 12x + 18$
e)	$y = f(x) = -2x^2 - 6x - 2$	f)	$y = f(x) = x^2 + 1$
g)	$y = f(x) = -\frac{1}{2}x^2 + 2x - 2$	h)	$y = f(x) = -4x^2 + 24x - 43$
i)	y = f(x) = 2(x - 3)(x + 4)	j)	$y = f(x) = x + 3 - (x + \frac{1}{2})x$
			(

7.7 For the graphs of the quadratic functions f: $\mathbb{R} \to \mathbb{R}$, $x \mapsto y = f(x)$ in a) to f) ...

i) ... determine the coordinates of the vertex.

- ii) ... state whether the parabola opens upwards or downwards.
- a) $y = f(x) = 2x^2 + 12x + 20$ b) $y = f(x) = \frac{1}{2}x^2 + \frac{3}{2}x + \frac{1}{2}$
- c) $y = f(x) = 12x 3x^2 11$ d) y = f(x) = x(-0.2x + 1.2) 2.8
- e) $y = f(x) = \frac{17 + 12x + 2x^2}{4}$ f) y = f(x) = 7x(3 x) 13.25

- 7.8 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
 - a) The graph of a quadratic function ...

... only depends on the position of the vertex.

Exercises 7 - 2016/17

Answers

7.1	see th	neory	
7.2	see th	neory	
7.3	a)	i)	a = 1, u = -2, v = 0
		ii)	V(-2 0)
		iii)	parabola opens upwards
		iv)	
	b)	i)	a = -3, u = 0, v = 0
		ii)	V(0 0)
		iii)	parabola opens downwards
		iv)	
	c)	i)	a = 2, u = 0, v = -1
		ii)	V(0 -1)
		iii)	parabola opens upwards
		iv)	
	d)	i)	a = -1, u = 3, v = 4
		ii)	V(3 4)
		iii)	parabola opens downwards
		iv)	
	e)	i)	$a = \frac{1}{2}, u = -3, v = 2$
		ii)	V(-3 2)
		iii)	parabola opens upwards
		iv)	
	f)	i)	a = -2, u = 1, v = 5
		ii)	V(1 5)
		iii)	parabola opens downwards
		iv)	
	g)	i)	$a = -1, u = \frac{1}{2}, v = \frac{5}{2}$
		ii)	$V\left(\frac{1}{2} \mid \frac{5}{2}\right)$
		iii)	parabola opens downwards
		iv)	

i)

h)

a)

c)

ii)
$$V\left(2|-\frac{1}{2}\right)$$

iii) parabola opens downwards

 $a = -3, u = 2, v = -\frac{1}{2}$

iv) ...

7.4

$$y = f(x) = a(x - u)^2 + v = ... = ax^2 - 2aux + au^2 + v = ax^2 + (-2au)x + (au^2 + v)$$

Hints:

Expand the term (x-u)².
Simplify the whole expression.

7.5 a)
$$y = f(x) = 2x^2 - 12x + 22$$

b)
$$y = f(x) = -x^2 - 4x - 7$$

 $y = f(x) = x^2 + 5$ Notice:

- This is both the general and the vertex form of the equation.

d)
$$y = f(x) = -3x^2 + 24x - 48$$

7.6
 a)

$$y = f(x) = 3(x - 2)^2 - 4$$
 b)
 $y = f(x) = (x + 3)^2 - 9$

 c)
 $y = f(x) = (x - 1)^2$
 d)
 $y = f(x) = 2(x + 3)^2$

 e)
 $y = f(x) = -2\left(x + \frac{3}{2}\right)^2 + \frac{5}{2}$
 f)
 $y = f(x) = x^2 + 1$

 g)
 $y = f(x) = -\frac{1}{2}(x - 2)^2$
 h)
 $y = f(x) = -4(x - 3)^2 - 7$

 i)
 $y = f(x) = 2\left(x + \frac{1}{2}\right)^2 - \frac{49}{2}$
 j)
 $y = f(x) = -\left(x - \frac{1}{4}\right)^2 + \frac{49}{16}$

 7.7
 a)
 i)
 $V(-3|2)$
 b)
 i)
 $V\left(-\frac{3}{2}|-\frac{5}{8}\right)$

 ii)
 parabola opens upwards
 iii)
 parabola opens downwards
 iii)
 parabola opens downwards

 e)
 i)
 $V\left(-3|-\frac{1}{4}\right)$
 f)
 i)
 $V\left(\frac{3}{2}|\frac{5}{2}\right)$

 iii)
 parabola opens upwards
 iii)
 parabola opens downwards

 e)
 i)
 $V\left(-3|-\frac{1}{4}\right)$
 f)
 i)
 $V\left(\frac{3}{2}|\frac{5}{2}\right)$

 iii)
 parabola opens upwards
 iii)
 parabola opens downwards

7.8 a) 4^{th} statement

- b) 3rd statement
- c) 1st statement