Review exercises 2 Differential calculus, integral calculus

Problems

- R2.1 Decide whether the following statements are true or false:
 - a) "The derivative of a function is a function."
 - b) "The derivative of a function at a particular value of the variable is a number."
 - c) "The function f has a relative maximum at $x = x_1$ if $f'(x_1) = 0$ and $f''(x_1) > 0$."
 - d) "If $f''(x_2) = 0$ and $f'''(x_2) < 0$, then the function f has a point of inflection at $x = x_2$."
 - e) "Suppose that the function f has a relative maximum at $x = x_1$. If there are no other relative maxima and if there is no relative minimum at all, then the relative maximum is the absolute maximum of f."
 - f) "If g' = f, then g is an antiderivative of f."
 - g) "f with f(x) = 2x + 20 is an antiderivative of g with $g(x) = x^2$."
 - h) "f with f(x) = 3x has infinitely many antiderivatives."
 - i) "The indefinite integral of a function is a set of functions."
- R2.2 Determine the value $f(x_0)$, the first derivative f '(x₀), and the second derivative f ''(x₀) at x₀ for the following functions f:

$f(x) = 4x^2(x^2 - 1)$					
i)	$x_0 = 0$	ii)	$x_0 = -1$		
f(x) = ($-3x^2 + 2x - 1) \cdot e^x$				
i)	$x_0 = 0$	ii)	$x_0 = -2$		
$f(x) = (x^2 + 2) \cdot e^{-3x}$					
i)	$\mathbf{x}_0 = 1$	ii)	$x_0 = -\frac{1}{3}$		
	i) $f(x) = (-1)^{i}$ i) $f(x) = (-1)^{i}$	i) $x_0 = 0$ $f(x) = (-3x^2 + 2x - 1) \cdot e^x$ i) $x_0 = 0$ $f(x) = (x^2 + 2) \cdot e^{-3x}$	i) $x_0 = 0$ ii) $f(x) = (-3x^2 + 2x - 1) \cdot e^x$ i) $x_0 = 0$ ii) $f(x) = (x^2 + 2) \cdot e^{-3x}$		

- R2.3 For the given cost function C(x) and revenue function R(x) determine ...
 - i) ... the marginal cost function C'(x).
 - ii) ... the marginal revenue function R'(x).
 - iii) ... the marginal profit function P'(x).

a)
$$C(x) = 200 + 40x$$
 $R(x) = 60x$

b)
$$C(x) = 100 + 20x + 5x^2$$
 $R(x) = 100x - 2x^2$

c)
$$C(x) = 50 + 20x^2 + 3e^{4x}$$
 $R(x) = 200x - e^{-4x^2}$

R2.4 For each function, find ...

- i) ... the relative maxima and minima.
- ii) ... the points of inflection.
- a) $f(x) = 2x^3 9x^2 + 12x 1$
- b) f(x) as in R2.2 a)

R2.5 The total revenue function for a commodity is given by

 $R(x) = 36x - 0.01x^2$

Find the maximum revenue ...

- a) ... if production is not limited to a certain number of units.
- b) ... if production is limited to at most 1500 units.
- R2.6 If the total cost function for a product is

 $C(x) = 100 + x^2$

producing how many units x will result in a minimum average cost per unit? Find the minimum average cost.

R2.7 A firm can produce only 1000 units per month. The monthly total cost ist given by

C(x) = 300 + 200x

dollars, where x is the number produced. If the total revenue is given by

$$R(x) = 250x - \frac{1}{100}x^2$$

dollars, how many items should the firm produce for maximum profit? Find the maximum profit.

R2.8 Determine the indefinite integrals below:

a)
$$\int (x^4 - 3x^3 - 6) dx$$

b) $\int \left(\frac{1}{2}x^6 - \frac{2}{3x^4}\right) dx$

R2.9 The equation of the third derivative f " of a function f is given as follows:

f'''(x) = 3x + 1

Find the equation of the function f such that f''(0) = 0, f'(0) = 1, f(0) = 2

- R2.10 If the marginal cost (in dollars) for producing a product is C'(x) = 5x + 10, with a fixed cost of \$800, what will be the cost of producing 20 units?
- R2.11 A certain firm's marginal cost C'(x) and the derivative of the average revenue $\overline{R}'(x)$ are given as follows:

C'(x) = 6x + 60

 $\overline{\mathbf{R}}'(\mathbf{x}) = -1$

The total cost and revenue of the production of 10 items are \$1000 and \$1700, respectively. How many units will result in a maximum profit? Find the maximum profit.

R2.12 The demand function for a product is

$$\mathbf{p} = \mathbf{f}(\mathbf{x}) = 49 - \mathbf{x}^2$$

and the supply function is

p = g(x) = 4x + 4

Find the equilibrium point and both the consumer's and the producer's surplus there.

R2.13 The demand function for a product is

$$p = f(x) = 110 - ax^2$$

and the supply function is

$$p = g(x) = 2 - \frac{6}{5}x + bx^2$$

with unknown parameters a and b. The equilibrium price is \$10, and the producer's surplus is \$73.33 Determine the two unknown parameters a and b.

Answers									
R2.1	a)	true	t	b)	true	c)	false		
	d)	true	e	e)	true	f)	true		
	g)	false	ł	h)	true	i)	true		
R2.2	a)	f '(v) -	- 16v ³ 8v						
N2.2	<i>a)</i>		$f'(x) = 16x^3 - 8x$ $f''(x) = 48x^2 - 8$						
		i)	f(0) = 0		f '(0) = 0	f "(0)	= - 8		
		·			f '(-1) = - 8	f "(-1)	= 40		
	b)		$f'(x) = (-3x^2 - 4x + 1) \cdot e^x$ $f''(x) = (-3x^2 - 10x - 3) \cdot e^x$						
		i)	f(0) = -1		f '(0) = 1	f "(0)	= -3		
		ii)	i) $f(-2) = -17 \cdot e^{-2} = -2.300$ $f'(-2) = -3 \cdot e^{-2} = -0.406$ $f''(-2) = 5 \cdot e^{-2} = 0.676$						
	c)		$f'(x) = (-3x^2 + 2x - 6) \cdot e^{-3x}$ $f''(x) = (9x^2 - 12x + 20) \cdot e^{-3x}$						
		i)	$f(1) = 3 \cdot e^{-7}$ f'(1) = -7 f''(1) = 17	$7 \cdot e^{-3} = -$	0.348				
		ii)	$f\left(-\frac{1}{3}\right) = \frac{19}{9}$ $f'\left(-\frac{1}{3}\right) = -$ $f''\left(-\frac{1}{3}\right) = -$	-7e = -2	19.027				
R2.3	a)	i)	C'(x) = 40	0			ii)	R'(x) = 60	
		iii)	P'(x) = 20	C					
	b)	i)	C'(x) = 20	0 + 10x	ζ.		ii)	R'(x) = 100 - 4x	
		iii)	$\mathbf{P}'(\mathbf{x}) = 80$	0 - 14x					
	c)	i)	C'(x) = 40	0x + 12	$2e^{4x}$		ii)	$R'(x) = 200 + 8x e^{-4x^2}$	
		iii)	P'(x) = 20	00 - 40	$x - 12e^{4x} + 8x e^{-3x}$	4x ²			
R2.4	a)	f '(x) =		+ 12 at x ₁ =	1 and $x_2 = 2$	⇒	relativo	e maximum at $x_1 = 1$	
			$f''(x_2) = 6$			⇒		e minimum at $x_2 = 2$	

 $f(x) = 4x^2(x^2 - 1)$ b) $f'(x) = 16x^3 - 8x = 8x(2x^2 - 1)$ $f''(x) = 48x^2 - 8 = 8(6x^2 - 1)$ f'''(x) = 96xf'(x) = 0 at x₁ = 0, x₂ = $\frac{1}{\sqrt{2}}$, and x₃ = $-\frac{1}{\sqrt{2}}$ i) $f''(x_1) = -8 < 0$ $f''(x_2) = 16 > 0$ ⇒ ⇒ relative maximum at $x_1 = 0$ relative minimum at $x_2 = \frac{1}{\sqrt{2}}$ relative minimum at $x_3 = -\frac{1}{\sqrt{2}}$ $f''(x_3) = 16 > 0$ ⇒ f "(x) = 0 at x₃ = $\frac{1}{\sqrt{6}}$ ii) $f'''(x_3) = \frac{96}{\sqrt{6}} \neq 0$ point of inflection at $x_3 = \frac{1}{\sqrt{6}}$ \Rightarrow

- R2.5 a) Relative maximum at $x_1 = 1800$ $R(x_1) = \$32'400$ $R(x) < R(x_1)$ if $x \neq x_1$ as there is no relative minimum $\Rightarrow R = \$32'400$ is the absolute maximum revenue at x = 1800.
 - b) Relative maximum at x = 1800 lies outside the possible interval $0 \le x \le 1500$ R(1500) = 31'500 > R(0) = 0 $\Rightarrow R = 31'500$ is the **absolute** maximum revenue at x = 1500.
- R2.6 $\overline{C}(x) = \frac{C(x)}{x} = \frac{100}{x} + x$ $\overline{C}(x)$ has a **relative** minimum at $x_1 = 10$ $\overline{C}(10) = \$20$ $\overline{C}(x) > \overline{C}(x_1)$ if $x \neq x_1$ as there is no relative maximum $\Rightarrow \overline{C} = \20 is the **absolute** minimum average cost at x = 10.

R2.7 $P(x) = R(x) - C(x) = -\frac{1}{100}x^2 + 50x - 300$ P(x) has a **relative** maximum at $x_1 = 2500$. This is outside the possible interval $0 \le x \le 1000$ P(1000) = 39'700 > P(0) = -300 \Rightarrow P = 39'700 is the **absolute** maximum profit at the endpoint x = 1000.

R2.8 a) $\int (x^4 - 3x^3 - 6) dx = \frac{x^5}{5} + \frac{3x^4}{4} - 6x + C$ b) $\int \left(\frac{1}{2}x^6 - \frac{2}{3x^4}\right) dx = \frac{x^7}{14} + \frac{2}{9x^3} + C$

R2.9
$$f(x) = \frac{x^4}{8} + \frac{x^3}{6} + x + 2$$

R2.10 C(20) = \$2000

Hint:

- First, determine the cost function $C(x) \Rightarrow C(x) = \frac{5}{2}x^2 + 10x + 800$

R2.11 P =\$800 is the absolute maximum profit at x = 15 units.

Hints:

- Determine the cost function $C(x) \Rightarrow C(x) = 3x^2 + 60x + 100$

- Determine the average revenue function $\overline{R}(x)\,\Rightarrow\,\overline{R}(x)$ = x + C
- Determine the revenue function $R(x) \Rightarrow R(x) = -x^2 + 180x$
- Find the profit function $P(x) \Rightarrow P(x) = -4x^2 + 120x 100$
- Find the relative maximum of the profit function P(x).
- Check if the relative maximum is the absolute maximum.
- $\begin{array}{lll} \mbox{R2.12} & \mbox{Equilibrium quantity} & \mbox{$x=5$} \\ \mbox{Equilibrium price} & \mbox{$p=24$} \\ \mbox{Consumer's surplus} & \mbox{CS} = 83.33 \\ \mbox{Producer's surplus} & \mbox{PS} = 50 \end{array}$

R2.13
$$a = 1$$

 $b = 0.2$