Exercises 17 Definite integral Definite integral, area under a curve, consumer's/producer's surplus

Objectives

- be able to determine the definite integral of a constant/basic power/basic exponential function.
- be able to determine the area between the graph of a basic power function and the abscissa.
- be able to determine the consumer's/producer's surplus if the demand and supply functions are basic power functions.

Problems

17.1 Calculate the definite integrals below:

a)
$$\int_3^4 (2x - 5) dx$$

b)
$$\int_0^1 (x^3 + 2x) dx$$

b)
$$\int_0^1 (x^3 + 2x) dx$$
 c) $\int_{-5}^{-3} \left(\frac{x^2}{2} - 4\right) dx$

d)
$$\int_{2}^{4} \left(x^{3} - \frac{x^{2}}{2} + 3x - 4 \right) dx$$
 e) $\int_{-2}^{2} \left(2x^{2} - \frac{x^{4}}{8} \right) dx$ f) $\int_{-1}^{1} e^{x} dx$

e)
$$\int_{-2}^{2} \left(2x^2 - \frac{x^4}{8}\right) dx$$

f)
$$\int_{-1}^{1} e^{x} dx$$

17.2 Determine the area between the graph of the function and the x-axis on the interval where the graph of f is above the x-axis, i.e. where $f(x) \ge 0$.

a)
$$f(x) = -x^2 + 1$$

b)
$$f(x) = x^3 - x^2 - 2x$$

17.3 The demand function for a product is $p = f(x) = 100 - 4x^2$. If the equilibrium quantity is 4 units, what is the consumer's surplus?

The demand function for a product is $p = f(x) = 34 - x^2$. 17.4 If the equilibrium price is \$9, what is the consumer's surplus?

17.5 The demand function for a certain product is

$$p = f(x) = 81 - x^2$$

and the supply function is

$$p = g(x) = x^2 + 4x + 11$$
.

Find the equilibrium point and the consumer's surplus there.

17.6 Suppose that the supply function for a good is $p = g(x) = 4x^2 + 2x + 2$. If the equilibrium price is \$422, what is the producer's surplus?

17.7 Find the producer's surplus for a product if its demand function is

$$p = f(x) = 81 - x^2$$

and its supply function is

$$p = g(x) = x^2 + 4x + 11$$

17.8 The demand function for a certain product is

$$p = f(x) = 144 - 2x^2$$

and the supply function is

$$p = g(x) = x^2 + 33x + 48$$

Find the producer's surplus at the equilibrium point.

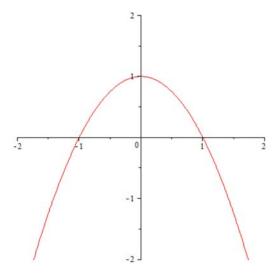
Tourism, Mathematics, T. Borer

17.9	which statements are true or false. Put a mark into the corresponding box. problem a) to c), exactly one statement is true.					
	a)	The definite integral of a function is a				
		real number function set of functions graph.				
	b)	$\int_a^b f(x) dx$				
	c)	The consumer's surplus is an area between				
		 the graphs of the demand and the supply functions. the x axis and the graph of the demand function. the graph of the demand function and the horizontal line "price = equilibrium price". the horizontal line "price = equilibrium price" and the graph of the supply function. 				

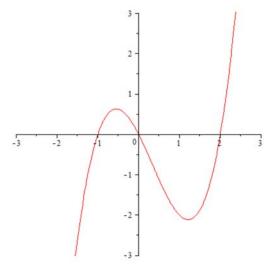
Answers

17.1 a)
$$\int_{2}^{4} (2x - 5) dx = [x^{2} - 5x]_{3}^{4} = (4^{2} - 5 \cdot 4) - (3^{2} - 5 \cdot 3) = 2$$

b)
$$\int_0^1 (x^3 + 2x) dx = \left[\frac{x^4}{4} + x^2 \right]_0^1 = \left(\frac{1^4}{4} + 1^2 \right) - \left(\frac{0^4}{4} + 0^2 \right) = \frac{5}{4}$$


c)
$$\int_{-5}^{-3} \left(\frac{x^2}{2} - 4 \right) dx = \left[\frac{x^3}{6} - 4x \right]_{-5}^{-3} = \left(\frac{(-3)^3}{6} - 4 \cdot (-3) \right) - \left(\frac{(-5)^3}{6} - 4 \cdot (-5) \right) = \frac{25}{3}$$

d)
$$\int_{2}^{4} \left(x^{3} - \frac{x^{2}}{2} + 3x - 4 \right) dx = \left[\frac{x^{4}}{4} - \frac{x^{3}}{6} + \frac{3x^{2}}{2} - 4x \right]_{2}^{4} = \left(\frac{4^{4}}{4} - \frac{4^{3}}{6} + \frac{3 \cdot 4^{2}}{2} - 4 \cdot 4 \right) - \left(\frac{2^{4}}{4} - \frac{2^{3}}{6} + \frac{3 \cdot 2^{2}}{2} - 4 \cdot 2 \right) = \frac{182}{3}$$


e)
$$\int_{-2}^{2} \left(2x^{2} - \frac{x^{4}}{8} \right) dx = \left[\frac{2x^{3}}{3} - \frac{x^{5}}{40} \right]_{-2}^{2} = \left(\frac{2 \cdot 2^{3}}{3} - \frac{2^{5}}{40} \right) - \left(\frac{2 \cdot (-2)^{3}}{3} - \frac{(-2)^{5}}{40} \right) = \frac{136}{15}$$

f)
$$\int_{-1}^{1} e^{x} dx = [e^{x}]_{-1}^{1} = e^{1} - e^{-1} = e - \frac{1}{e}$$

17.2 a)
$$A = \int_{-1}^{1} (-x^2 + 1) dx = \left[-\frac{x^3}{3} + x \right]_{-1}^{1} = \frac{4}{3}$$

b)
$$A = \int_{-1}^{0} (x^3 - x^2 - 2x) dx = \left[\frac{x^4}{4} - \frac{x^3}{3} - x^2 \right]_{-1}^{0} = \frac{5}{12}$$

Hints:

- First, find the positions x where the graph of f intersects the x-axis, i.e where f(x) = 0
- Then, find the interval on which the graph of f is above the x-axis, i.e. where $f(x) \ge 0$

Tourism	Mathematics.	Т	Rorer
I Oulisiii.	manicinatics,	1.	DUIG

17.3	Consum	ner's surplus	CS = \$170.67
17.4	Consum	ner's surplus	CS = \$83.33
17.5	Equilibr	rium quantity rium price ner's surplus	x = 5 p = \$56 CS = \$83.33
17.6	Producer's surplus		PS = \$2766.67
17.7	Produce	er's surplus	PS = \$133.33
17.8	Produce	er's surplus	PS = \$103.34
17.9	a) b)	1 st statement 2 nd statement	
	c)	3 rd statement	