Exercises 17 Definite integral
 Definite integral, area under a curve, consumer's/producer's surplus

Objectives

- be able to determine the definite integral of a constant/basic power/basic exponential function.
- be able to determine the area between the graph of a basic power function and the abscissa.
- be able to determine the consumer's/producer's surplus if the demand and supply functions are basic power functions.

Problems

17.1 Calculate the definite integrals below:
a) $\quad \int_{3}^{4}(2 x-5) d x$
b) $\quad \int_{0}^{1}\left(x^{3}+2 x\right) d x$
c) $\quad \int_{-5}^{-3}\left(\frac{x^{2}}{2}-4\right) d x$
d) $\quad \int_{2}^{4}\left(x^{3}-\frac{x^{2}}{2}+3 x-4\right) d x$
e) $\quad \int_{-2}^{2}\left(2 x^{2}-\frac{x^{4}}{8}\right) d x$
f) $\quad \int_{-1}^{1} e^{x} d x$
17.2 Determine the area between the graph of the function and the x -axis on the interval where the graph of f is above the x-axis, i.e. where $f(x) \geq 0$.
a) $\quad f(x)=-x^{2}+1$
b) $\quad f(x)=x^{3}-x^{2}-2 x$
17.3 The demand function for a product is $p=f(x)=100-4 x^{2}$. If the equilibrium quantity is 4 units, what is the consumer's surplus?
17.4 The demand function for a product is $p=f(x)=34-x^{2}$.

If the equilibrium price is $\$ 9$, what is the consumer's surplus?
17.5 The demand function for a certain product is

$$
\mathrm{p}=\mathrm{f}(\mathrm{x})=81-\mathrm{x}^{2}
$$

and the supply function is

$$
\mathrm{p}=\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+4 \mathrm{x}+11
$$

Find the equilibrium point and the consumer's surplus there.
17.6 Suppose that the supply function for a good is $\mathrm{p}=\mathrm{g}(\mathrm{x})=4 \mathrm{x}^{2}+2 \mathrm{x}+2$. If the equilibrium price is $\$ 422$, what is the producer's surplus?
17.7 Find the producer's surplus for a product if its demand function is

$$
\mathrm{p}=\mathrm{f}(\mathrm{x})=81-\mathrm{x}^{2}
$$

and its supply function is

$$
\mathrm{p}=\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+4 \mathrm{x}+11
$$

17.8 The demand function for a certain product is

$$
p=f(x)=144-2 x^{2}
$$

and the supply function is

$$
\mathrm{p}=\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+33 \mathrm{x}+48
$$

Find the producer's surplus at the equilibrium point.

Answers

17.1 a) $\int_{3}^{4}(2 x-5) d x=\left[x^{2}-5 x\right]_{3}^{4}=\left(4^{2}-5 \cdot 4\right)-\left(3^{2}-5 \cdot 3\right)=2$
b) $\quad \int_{0}^{1}\left(x^{3}+2 x\right) d x=\left[\frac{x^{4}}{4}+x^{2}\right]_{0}^{1}=\left(\frac{1^{4}}{4}+1^{2}\right)-\left(\frac{0^{4}}{4}+0^{2}\right)=\frac{5}{4}$
c) $\quad \int_{-5}^{-3}\left(\frac{x^{2}}{2}-4\right) d x=\left[\frac{x^{3}}{6}-4 x\right]_{-5}^{-3}=\left(\frac{(-3)^{3}}{6}-4 \cdot(-3)\right)-\left(\frac{(-5)^{3}}{6}-4 \cdot(-5)\right)=\frac{25}{3}$
d) $\quad \int_{2}^{4}\left(x^{3}-\frac{x^{2}}{2}+3 x-4\right) d x=\left[\frac{x^{4}}{4}-\frac{x^{3}}{6}+\frac{3 x^{2}}{2}-4 x\right]_{2}^{4}=\left(\frac{4^{4}}{4}-\frac{4^{3}}{6}+\frac{3 \cdot 4^{2}}{2}-4 \cdot 4\right)-\left(\frac{2^{4}}{4}-\frac{2^{3}}{6}+\frac{3 \cdot 2^{2}}{2}-4 \cdot 2\right)=\frac{182}{3}$
e) $\quad \int_{-2}^{2}\left(2 x^{2}-\frac{x^{4}}{8}\right) d x=\left[\frac{2 x^{3}}{3}-\frac{x^{5}}{40}\right]_{-2}^{2}=\left(\frac{2 \cdot 2^{3}}{3}-\frac{2^{5}}{40}\right)-\left(\frac{2 \cdot(-2)^{3}}{3}-\frac{(-2)^{5}}{40}\right)=\frac{136}{15}$
f) $\quad \int_{-1}^{1} e^{x} d x=\left[e^{x}\right]_{-1}^{1}=e^{1}-e^{-1}=e-\frac{1}{e}$
a) $\quad A=\int_{-1}^{1}\left(-x^{2}+1\right) d x=\left[-\frac{x^{3}}{3}+x\right]_{-1}^{1}=\frac{4}{3}$
b) $\quad A=\int_{-1}^{0}\left(x^{3}-x^{2}-2 x\right) d x=\left[\frac{x^{4}}{4}-\frac{x^{3}}{3}-x^{2}\right]_{-1}^{0}=\frac{5}{12}$

Hints:

- First, find the positions x where the graph of f intersects the x-axis, i.e where $f(x)=0$
- Then, find the interval on which the graph of f is above the x-axis, i.e. where $f(x) \geq 0$
17.3 Consumer's surplus $\quad \mathrm{CS}=\$ 170.67$
17.4 Consumer's surplus
$\mathrm{CS}=\$ 83.33$
17.5 Equilibrium quantity

$$
x=5
$$

Equilibrium price
$\mathrm{p}=\$ 56$
Consumer's surplus $\mathrm{CS}=\$ 83.33$
17.6 Producer's surplus $\quad \mathrm{PS}=\$ 2766.67$
17.7 Producer's surplus $\quad \mathrm{PS}=\$ 133.33$
17.8 Producer's surplus $\quad \mathrm{PS}=\$ 103.34$

