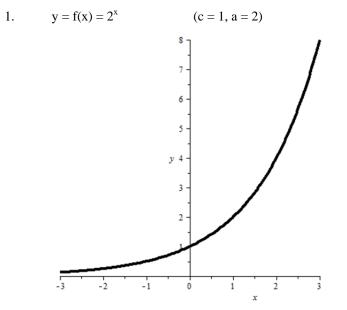
Exponential function

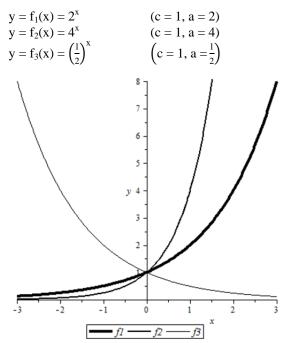
Definition

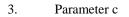
f: $D \rightarrow I$	R	$(D\subseteq\mathbb{R})$
$x \rightarrow y$	$y = f(x) = c \cdot a^x$	$(a \in \mathbb{R}^+ \setminus \{1\}, c \in \mathbb{R} \setminus \{0\})$
	exponential growth exponential decay	

Graph

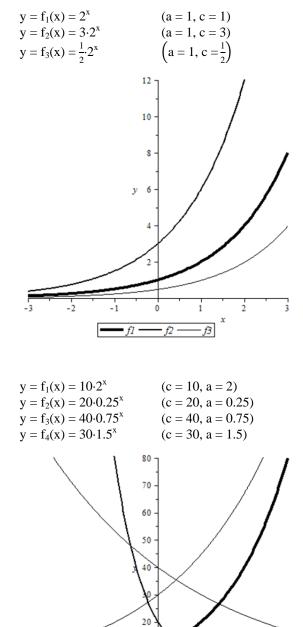


2. Parameter a





4.



-3

-1

- f1 -

-2

ó

- f2 -

1

- *f*3 -

2

*f*4

Examples

1. Compound interest (exponential **growth**)

$C_n = C_0 \cdot q^n$	C_0 = initial capital C_n = capital after n compounding periods n = number of compounding periods (tunically, 1 compounding period = 1 year)	
	n = number of compounding periods (typically: 1 compounding period = 1 year) q = growth factor = $1 + r$ (q > 1) r = interest rate per compounding period	
	Ex.: $C_0 := 1000, r := 2\% = 0.02 \implies q = 1.02 \implies C_n = 1000 \cdot 1.02^n$	

2. Consumer price index (exponential **decay**)

$$\begin{split} P(t) &= P_0 \cdot q^t \\ P_0 &= \text{initial purchasing power} \\ P(t) &= \text{purchasing power at time t (typically: t in years)} \\ q &= \text{decay factor} \quad (q < 1) \\ \text{Ex.:} \quad P_0 &:= 100, q := 0.97 \implies P(t) = 100 \cdot 0.97^t \end{split}$$