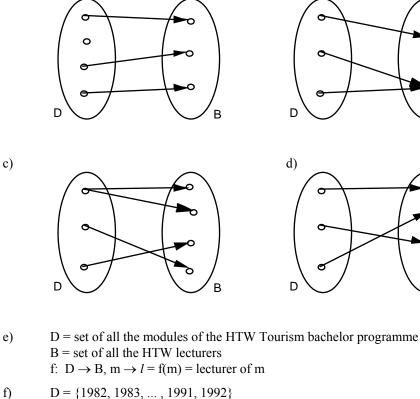
Exercises 3 Function Domain, codomain, range, graph


Objectives

- understand what a function is.
- be able to judge whether a given relation is a function.
- be able to determine the range of a given function.
- be able to determine values of a given function.

Problems

a)

b)

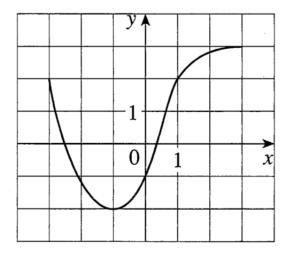
- $D = \{1982, 1983, \dots, 1991, 1992\}$ B = set of all the human beings aged between 20 and 30 f: D \rightarrow B, y \rightarrow p = f(y) = person who was born in the year y
- g) D = set of all the human beings aged between 20 and 30 $B = \{1982, 1983, \dots, 1991, 1992\}$ f: $D \rightarrow B, p \rightarrow y = f(p) = \text{year of birth of person p}$
- h) f: $\mathbb{R} \to \mathbb{R}, x \to y = f(x) = x^2$
- i) f: ℝ⁺ → ℝ, x → y = f(x) = number whose square is x
 Notice:
 ℝ⁺ is the set of all positive real numbers, i.e. ℝ⁺ = {x: x∈ℝ and x > 0}.
- j) f: $\mathbb{R} \to \mathbb{R}$, $t \to b = f(t) = bank$ account balance at time t

- 3.2 Determine the range E of the functions below:
 - a) $D = \{January, February, March, ..., December\}$ $B = \{A, B, C, ..., Z\}$ f: $D \rightarrow B, m \rightarrow l = f(m) = initial letter of m$
 - b) D = set of all the neighbouring countries of SwitzerlandB = set of all the European cities $c: D <math>\rightarrow$ B, x \rightarrow y = c(x) = capital of neighbouring country x
 - c) function f in problem 3.1 g)
 - d) function f in problem 3.1 h)

```
3.3
```

a) f: $\mathbb{R} \to \mathbb{R}, x \to f(x) = x^3 - x$

Determine the following values:


i)	f(1)	ii)	f(-2)	iii)	f(a)
iv)	$f(b^2)$	v)	f(a - b)	vi)	$f(x^3 - x)$

b) g: $\mathbb{R} \setminus \{-1\} \to \mathbb{R}, x \to g(x) = \frac{x^2}{x+1}$

Determine the following values:

i) g(2) ii) g(-3) iii) g(a)

- iv) $g(b^2)$ v) g(a b) vi) $g\left(\frac{x^2}{x+1}\right)$
- 3.4 The graph of a function f ist given as follows:

- a) State the value of f(-1).
- b) Estimate the value of f(2).
- c) For what values of x is f(x) = 2?
- d) Estimate the values of x such that f(x) = 0.
- e) State the domain D of f.
- f) State the range E of f.

Answers

3.1	a)	no function	b)	function
	c)	no function	d)	function
	e)	no function	f)	no function
	g)	function	h)	function
	i)	no function	j)	function

3.2 a)
$$E = \{A, D, F, J, M, N, O, S\}$$

b)
$$E = \{Berlin, Vienna, Vaduz, Rome, Paris\}$$

c) E = B

d) $E = \mathbb{R}_0^+$

- \mathbb{R}_0^+ is the set of all positive real numbers, including zero, i.e. $\mathbb{R}_0^+ = \{x: x \in \mathbb{R} \text{ and } x \ge 0\}.$

iv)
$$f(b^2) = (b^2)^3 - b^2 = b^6 - b^2$$

 $f(1) = 1^3 - 1 = 0$

 $f(a) = a^3 - a$

 $f(-2) = (-2)^3 - (-2) = -6$

v) $f(a - b) = (a - b)^3 - (a - b) = a^3 - 3a^2b + 3ab^2 - b^3 - a + b$

vi)
$$f(x^3-x)=(x^3-x)^3-(x^3-x)=x^9-3x^7+3x^5-2x^3+x$$

i)
$$g(2) = \frac{2^2}{2+1} = \frac{4}{3}$$

ii) $g(-3) = \frac{(-3)^2}{-3+1} = -\frac{9}{2}$
iii) $g(a) = \frac{a^2}{a+1}$
iv) $g(b^2) = \frac{(b^2)^2}{b^2+1} = \frac{b^4}{b^2+1}$
v) $g(a-b) = \frac{(a-b)^2}{(a-b)+1} = \frac{a^2-2ab+b^2}{a-b+1}$
vi) $g(\frac{x^2}{x+1}) = \frac{(\frac{x^2}{x+1})^2}{(\frac{x^2}{x+1})+1} = \frac{x^4}{x^3+2x^2+2x+1}$

3.4 a)
$$f(-1) = -2$$

b)
$$f(2) \approx 2.8$$

c)
$$x_1 = -3, x_2 = 1$$

d)
$$x_1 \approx -2.5, x_2 \approx 0.3$$

e)
$$D = \{x: x \in \mathbb{R} \text{ and } -3 \le x \le 3\} = [-3,3]$$

f)
$$E = \{y: y \in \mathbb{R} \text{ and } -2 \le y \le 3\} = [-2,3]$$