Review exercises 2 Differential calculus, integral calculus

Problems

- R2.1 Decide whether the following statements are true or false:
 - a) "The derivative of a function is a function."
 - b) "The derivative of a function at a particular value of the variable is a number."
 - c) "The function f has a relative maximum at $x = x_1$ if $f'(x_1) = 0$ and $f''(x_1) > 0$."
 - d) "If $f''(x_2) = 0$ and $f'''(x_2) < 0$, then the function f has a point of inflection at $x = x_2$."
 - e) "Suppose that the function f has a relative maximum at $x = x_1$. If there are no other relative maxima and if there is no relative minimum at all, then the relative maximum is the absolute maximum of f."
 - f) "If g' = f, then g is an antiderivative of f."
 - g) "f with f(x) = 2x + 20 is an antiderivative of g with $g(x) = x^2$."
 - h) "f with f(x) = 3x has infinitely many antiderivatives."
 - i) "The indefinite integral of a function is a set of functions."
- R2.2 Determine the value $f(x_0)$, the first derivative $f'(x_0)$, and the second derivative $f''(x_0)$ at x_0 for the following functions f:

a)	$f(x) = 4x^2(x^2 - 1)$		
	i) $x_0 = 0$	ii)	$x_0 = -1$
b)	$f(x) = (-3x^2 + 2x - 1) \cdot e^x$		
	i) $x_0 = 0$	ii)	$x_0 = -2$
c)	$\mathbf{f}(\mathbf{x}) = (\mathbf{x}^2 + 2) \cdot \mathbf{e}^{-3\mathbf{x}}$		
	i) x ₀ = 1	ii)	$x_0 = -\frac{1}{3}$

- R2.3 For the given cost function C(x) and revenue function R(x) determine ...
 - i) ... the marginal cost function C'(x).
 - ii) ... the marginal revenue function R'(x).
 - iii) ... the marginal profit function P'(x).

a)
$$C(x) = 200 + 40x$$
 $R(x) = 60x$

b)
$$C(x) = 100 + 20x + 5x^2$$
 $R(x) = 100x - 2x^2$

c)
$$C(x) = 50 + 20x^2 + 3e^{4x}$$
 $R(x) = 200x - e^{-4x^2}$

R2.4 For each function, find ...

- i) ... the relative maxima and minima.
- ii) ... the points of inflection.
- a) $f(x) = 2x^3 9x^2 + 12x 1$
- b) f(x) as in R2.2 a)

R2.5 The total revenue function for a commodity is given by

 $R(x) = 36x - 0.01x^2$

Find the maximum revenue ...

- a) ... if production is not limited to a certain number of units.
- b) ... if production is limited to at most 1500 units.
- R2.6 If the total cost function for a product is

 $C(x) = 100 + x^2$

producing how many units x will result in a minimum average cost per unit? Find the minimum average cost.

R2.7 A firm can produce only 1000 units per month. The monthly total cost ist given by

C(x) = 300 + 200x

dollars, where x is the number produced. If the total revenue is given by

$$R(x) = 250x - \frac{1}{100}x^2$$

dollars, how many items should the firm produce for maximum profit? Find the maximum profit.

R2.8 Determine the indefinite integrals below:

a)
$$\int (x^4 - 3x^3 - 6) dx$$

b) $\int \left(\frac{1}{2}x^6 - \frac{2}{3x^4}\right) dx$

R2.9 The equation of the third derivative f'' of a function f is given as follows:

$$f'''(x) = 3x + 1$$

Find the equation of the function f such that f''(0) = 0, f'(0) = 1, f(0) = 2

- R2.10 If the marginal cost (in dollars) for producing a product is C'(x) = 5x + 10, with a fixed cost of \$800, what will be the cost of producing 20 units?
- R2.11 A certain firm's marginal cost C'(x) and the derivative of the average revenue \overline{R} '(x) are given as follows:

$$C'(x) = 6x + 60$$
$$\overline{R}'(x) = -1$$

The total cost and revenue of the production of 10 items are \$1000 and \$1700, respectively.

How many units will result in a maximum profit? Find the maximum profit.

R2.12 The demand function for a product is

$$p = f(x) = 49 - x^2$$

and the supply function is

$$\mathsf{p} = \mathsf{g}(\mathsf{x}) = 4\mathsf{x} + 4$$

Find the equilibrium point and both the consumer's and the producer's surplus there.

R2.13 The demand function for a product is

$$p = f(x) = 110 - ax^2$$

and the supply function is

$$p = g(x) = 2 - \frac{6}{5}x + bx^2$$

with unknown parameters a and b. The equilibrium price is \$10, and the producer's surplus is \$73.33 Determine the two unknown parameters a and b.

Answers

R2.1	a)	true	b)	true	c)	false	
	d)	true	e)	true	f)	true	
	g)	false	h)	true	i)	true	
R2.2	a)	$f'(x) = 16x^3 - 8x$ $f''(x) = 48x^2 - 8$					
		i)	f(0) = 0	f'(0) = 0	f''(0) =	- 8	
		ii)	f(-1) = 0	f'(-1) = - 8	f"(-1) =	= 40	
	b)	$f'(x) = (-3x^{2} - 4x + 1) \cdot e^{x}$ $f''(x) = (-3x^{2} - 10x - 3) \cdot e^{x}$					
		i)	f(0) = -1	f'(0) = 1	f''(0) =	-3	
		ii)	$f(-2) = -17 \cdot e^{-2}$ $f'(-2) = -3 \cdot e^{-2}$ $f''(-2) = 5 \cdot e^{-2}$	$r^{2} = -2.300$ $r^{2} = -0.406$ $r^{2} = 0.676$			
	c)	f'(x) = f''(x) =	$(-3x^2 + 2x - 6)$ $(9x^2 - 12x + 2)$	$\cdot e^{-3x}$ 0) $\cdot e^{-3x}$			
		i)	$f(1) = 3 \cdot e^{-3} = f'(1) = -7 \cdot e^{-3}$ $f''(1) = 17 \cdot e^{-3}$	= 0.149 = -0.348 $^{3} = 0.846$			
		ii)	$f\left(-\frac{1}{3}\right) = \frac{19}{9}e =$ $f'\left(-\frac{1}{3}\right) = -7e =$ $f''\left(-\frac{1}{3}\right) = 25e$	= 5.738 = -19.027 = = 67.957			
R2.3	a)	i)	C'(x) = 40			ii)	R'(x) = 60
		iii)	P'(x) = 20				
	b)	i)	C'(x) = 20 +	10x		ii)	R'(x) = 100 - 4x
		iii)	P'(x) = 80 - 1	14x			
	c)	i)	C'(x) = 40x -	$+ 12e^{4x}$		ii)	$R'(x) = 200 + 8x e^{-4x^2}$
		iii)	P'(x) = 200 -	$-40x - 12e^{4x} + 8x$	e^{-4x^2}		
R2.4	a)	f(x) = 2 f'(x) = 0 f''(x) = f'''(x) =	$2x^{3} - 9x^{2} + 12x$ $5x^{2} - 18x + 12$ 12x - 18 12	- 1			
		i)	f'(x) = 0 at x $f''(x_1) = -6 < f''(x_2) = 6 > 0$	$x_1 = 1 \text{ and } x_2 = 2$	\Rightarrow	relative relative	e maximum at $x_1 = 1$ e minimum at $x_2 = 2$

b)

ii) f''(x) = 0 at x₃ =
$$\frac{3}{2}$$

f'''(x₃) = 12 ≠ 0 ⇒ point of inflection at x₃ = $\frac{3}{2}$
f(x) = 4x²(x² - 1)
f'(x) = 16x³ - 8x = 8x(2x² - 1)
f''(x) = 48x² - 8 = 8(6x² - 1)
f''(x) = 96x
i) f'(x) = 0 at x₁ = 0, x₂ = $\frac{1}{\sqrt{2}}$, and x₃ = $-\frac{1}{\sqrt{2}}$
f''(x₁) = -8 < 0 ⇒ relative maximum at x₁ = 0
f''(x₂) = 16 > 0 ⇒ relative minimum at x₂ = $\frac{1}{\sqrt{2}}$
f''(x₃) = 16 > 0 ⇒ relative minimum at x₃ = $-\frac{1}{\sqrt{2}}$
ii) f''(x) = 0 at x₃ = $\frac{1}{\sqrt{6}}$
f'''(x₃) = $\frac{96}{\sqrt{6}} \neq 0$ ⇒ point of inflection at x₃ = $\frac{1}{\sqrt{6}}$

R2.5 a) Relative maximum at
$$x_1 = 1800$$

 $R(x_1) = \$32'400$
 $R(x) < R(x_1)$ if $x \neq x_1$ as there is no relative minimum
 $\Rightarrow R = \$32'400$ is the **absolute** maximum revenue at $x = 1800$.
b) Relative maximum at $x = 1800$ lies outside the possible interval $0 \le x \le 1000$

b) Relative maximum at x = 1800 lies outside the possible interval
$$0 \le x \le 1500$$

R(1500) = $\$31'500 > R(0) = 0$
 \Rightarrow R = $\$31'500$ is the **absolute** maximum revenue at x = 1500.

R2.6
$$\overline{C}(x) = \frac{C(x)}{x} = \frac{100}{x} + x$$

 $\overline{C}(x)$ has a **relative** minimum at $x_1 = 10$
 $\overline{C}(20) = \$20$
 $\overline{C}(x) > \overline{C}(x_1)$ if $x \neq x_1$ as there is no relative maximum
 $\Rightarrow \overline{C} = \20 is the **absolute** minimum average cost at $x = 10$.

R2.7
$$P(x) = R(x) - C(x) = -\frac{1}{100}x^2 + 50x - 300$$

P(x) has a **relative** maximum at x₁ = 2500. This is outside the possible interval $0 \le x \le 1000$
P(1000) = \$39'700 > P(0) = - 300\$
 \Rightarrow P = \$39'700 is the **absolute** maximum profit at the endpoint x = 1000.

R2.8 a)
$$\int (x^4 - 3x^3 - 6) dx = \frac{x^5}{5} + \frac{3x^4}{4} - 6x + C$$

b)
$$\int \left(\frac{1}{2}x^6 - \frac{2}{3x^4}\right) dx = \frac{x^7}{14} - \frac{2}{9x^3} + C$$

R2.9
$$f(x) = \frac{x^4}{8} + \frac{x^3}{6} + x + 2$$

R2.10 C(20) = \$2000

Hint:

Hint: - First, determine the cost function $C(x) \Rightarrow C(x) = \frac{5}{2}x^2 + 10x + 800$

R2.11 P =\$800 is the absolute maximum profit at x = 15 units.

Hints:

- Determine the cost function $C(x) \Rightarrow C(x) = 3x^2 + 60x + 100$
- Determine the average revenue function $\overline{R}(x) \Rightarrow \overline{R}(x) = -x + C$
- Determine the revenue function $R(x) \Rightarrow R(x) = -x^2 + 180x$ Find the profit function $P(x) \Rightarrow P(x) = -4x^2 + 120x 100$
- Find the relative maximum of the profit function P(x).
- Check if the relative maximum is the absolute maximum.

Equilibrium quantity	x = 5
Equilibrium price	p = 24
Consumer's surplus	CS = 83.33
Producer's surplus	PS = 50
	Equilibrium quantity Equilibrium price Consumer's surplus Producer's surplus

R2.13 a = 1b = 0.2