Definite integral

Area under a curve

f: $\mathrm{D} \rightarrow \mathbb{R}$
$(\mathrm{D} \subseteq \mathbb{R})$
$x \rightarrow y=f(x)$

Suppose that $\mathrm{f}(\mathrm{x}) \geq 0$ on the interval $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$

$A=$ area between the graph of f and the x-axis on the interval $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$

Definition

The area A between the graph of f and the x-axis on the interval $a \leq x \leq b$ is the definite integral of f from a to b, denoted by $\int_{a}^{b} f(x) d x$
$A=\int_{a}^{b} f(x) d x$

$$
A=\int_{1}^{2} x^{2} d x
$$

Fundamental theorem of calculus

$\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a) \quad$ where F is any antiderivative of f

Ex.: 1. $f(x)=x^{2}, a=1, b=2$

$$
\int_{1}^{2} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{1}^{2}=\frac{2^{3}}{3}-\frac{1^{3}}{3}=\frac{7}{3}=2 . \overline{3}
$$

2. $\int_{0}^{2} x^{3} d x=\left[\frac{x^{4}}{4}\right]_{0}^{2}=\frac{2^{4}}{4}-\frac{0^{4}}{4}=\frac{16}{4}=4$
3. $\int_{-1}^{1} 15 \mathrm{x}^{4} \mathrm{dx}=\left[3 \mathrm{x}^{5}\right]_{-1}^{1}=3 \cdot 1^{5}-3 \cdot(-1)^{5}=3-(-3)=6$

4. $\quad \int_{2}^{3}\left(x^{3}+2 x^{2}-5\right) d x=\left[\frac{x^{4}}{4}+\frac{2 x^{3}}{3}-5 x\right]_{2}^{3}=\left(\frac{3^{4}}{4}+\frac{2 \cdot 3^{3}}{3}-5 \cdot 3\right)-\left(\frac{2^{4}}{4}+\frac{2 \cdot 2^{3}}{3}-5 \cdot 2\right)=\frac{287}{12}=23.91 \overline{6}$

Consumer's Surplus

Suppose that the demand for a product is given by $p=f(x)$ and that the supply of the product is described by $p=g(x)$. The price p_{1} where the graphs of these functions intersect is the equilibrium price (sce Figure 13.21(a)). As the demand curve shows, some consumers (but not all) would be willing to pay more than $\$ p_{1}$ for the product.

For example, some consumers would be willing to buy x_{3} units if the price were $\$ p_{3}$. Those consumers willing to pay more than $\$ p_{1}$ are benefiting from the lower price. The total gain for all those consumers willing to pay more than $\$ p_{1}$ is called the consumer's surplus, and under proper assumptions the area of the shaded region in Figure 13.21(a) represents this consumer's surplus.

Looking at Figure 13.21(b), we see that if the demand curve has equation $p=f(x)$, the consumer's surplus is given by the area between $f(x)$ and the x-axis from 0 to x_{1}, minus the area of the rectangle denoted $T R$:

$$
C S=\int_{0}^{x_{1}} f(x) d x-p_{1} x_{1}
$$

Note that with equilibrium price p_{1} and equilibrium quantity x_{1}, the product $p_{1} x_{1}$ is the area of the rectangle that represents the total dollars spent by consumers and received as revenue by producers (see Figure 13.21(b)).

(a)

(b)

Producer's Surplus

When a product is sold at the equilibrium price, some producers will also benefit, for they would have sold the product at a lower price. The area between the line $p=p_{1}$ and the supply curve (from $x=0$ to $x=x_{1}$) gives the producer's surplus (see Figure 13.23).

If the supply function is $p=g(x)$, the producer's surplus is given by the area between the graph of $p=g(x)$ and the x-axis from 0 to x_{1} subtracted from the area of the rectangle $0 x_{1} E p_{1}$.

$$
P S=p_{1} x_{1}-\int_{0}^{x_{1}} g(x) d x
$$

Note that $p_{1} x_{1}$ represents the total revenue at the equilibrium point.

