## Indefinite integral

Ex.: Financial mathematics
Given the marginal cost function $\mathrm{C}^{\prime}(\mathrm{x})$ for the production of a commodity:

$$
C^{\prime}(x)=3 x+50
$$

What is the cost function $\mathrm{C}(\mathrm{x})$ ?

$$
C(x)=\ldots ?
$$

## General problem

Given a function f . What function F is such that $\mathrm{F}^{\prime}=\mathrm{f}$ ?
Ex.: $\quad f(x)=2 x$

$$
\begin{array}{lll}
\Rightarrow & F(x)=x^{2} & \text { as } F^{\prime}(x)=2 x=f(x) \\
F(x)=x^{2}+1 & \text { as } F^{\prime}(x)=2 x+0=2 x=f(x) \\
F(x)=x^{2}-4 & \text { as } F^{\prime}(x)=2 x+0=2 x=f(x) \\
\cdots & \\
& F(x)=x^{2}+C(C \in \mathbb{R}) & \text { as } F^{\prime}(x)=2 x+0=2 x=f(x)
\end{array}
$$

$$
\mathrm{f}(\mathrm{x})=8 \mathrm{x}^{3}
$$

$$
\begin{array}{lll}
\Rightarrow & \mathrm{F}(\mathrm{x})=2 \mathrm{x}^{4} & \text { as } \mathrm{F}^{\prime}(x)=8 \mathrm{x}^{3}=\mathrm{f}(\mathrm{x}) \\
\mathrm{F}(\mathrm{x})=2 \mathrm{x}^{4}+5 & \text { as } \mathrm{F}^{\prime}(\mathrm{x})=8 \mathrm{x}^{3}+0=8 \mathrm{x}^{3}=\mathrm{f}(\mathrm{x}) \\
\mathrm{F}(\mathrm{x})=2 \mathrm{x}^{4}-11 & \text { as } \mathrm{F}^{\prime}(\mathrm{x})=8 \mathrm{x}^{3}+0=8 \mathrm{x}^{3}=\mathrm{f}(\mathrm{x}) \\
\cdots & \\
\mathrm{F}(\mathrm{x})=2 \mathrm{x}^{4}+C(\mathrm{C} \in \mathbb{R}) & \text { as } \mathrm{F}^{\prime}(\mathrm{x})=8 \mathrm{x}^{3}+0=8 \mathrm{x}^{3}=\mathrm{f}(\mathrm{x})
\end{array}
$$

## Definitions

$F(x)$ is called an antiderivative of $f(x)$ if its derivative $F^{\prime}(x)$ is equal to $f(x)$, i.e. $F^{\prime}(x)=f(x)$.
The set of all antiderivatives of the function $f(x)$ is called the indefinite integral of $f(x)$, denoted by $\int f(x) d x$
$\int f(x) d x=F(x)+C$
$C(C \in \mathbb{R})$ is called the integration constant.

Ex.: $\quad f(x)=8 x^{3}$
The functions $\mathrm{F}(\mathrm{x})=2 \mathrm{x}^{4}, \mathrm{~F}(\mathrm{x})=2 \mathrm{x}^{4}+5, \mathrm{~F}(\mathrm{x})=2 \mathrm{x}^{4}-11, \ldots$ are antiderivatives of $\mathrm{f}(\mathrm{x})$.
We therefore write $\int f(x) d x=2 x^{4}+C$
$\mathrm{f}(\mathrm{x})=12 \mathrm{x}^{2}$
$\int f(x) d x=4 x^{3}+C$
$\int 2 x d x=x^{2}+C$
$\int 3 e^{3 x} d x=e^{3 x}+C$

