Indefinite integral

Ex.: Financial mathematics

Given the marginal cost function C'(x) for the production of a commodity:

$$C'(x) = 3x + 50$$

What is the cost function C(x)?

$$C(x) = ... ?$$

General problem

Given a function f. What function F is such that F' = f?

Ex.:
$$f(x) = 2x$$

 $\Rightarrow F(x) = x^2$ as $F'(x) = 2x = f(x)$
 $F(x) = x^2 + 1$ as $F'(x) = 2x + 0 = 2x = f(x)$
 $F(x) = x^2 - 4$ as $F'(x) = 2x + 0 = 2x = f(x)$
...

 $F(x) = x^2 + C$ ($C \in \mathbb{R}$) as $F'(x) = 2x + 0 = 2x = f(x)$
 $f(x) = 8x^3$
 $\Rightarrow F(x) = 2x^4$ as $F'(x) = 8x^3 = f(x)$
 $F(x) = 2x^4 + 5$ as $F'(x) = 8x^3 + 0 = 8x^3 = f(x)$
...

 $F(x) = 2x^4 + C$ ($C \in \mathbb{R}$) as $F'(x) = 8x^3 + 0 = 8x^3 = f(x)$
...

Definitions

F(x) is called an **antiderivative** of f(x) if its derivative F'(x) is equal to f(x), i.e. F'(x) = f(x).

The set of all antiderivatives of the function f(x) is called the **indefinite integral** of f(x), denoted by $\int f(x) dx = F(x) + C$

C ($C \in \mathbb{R}$) is called the **integration constant**.

Ex.:
$$f(x) = 8x^3$$
 The functions $F(x) = 2x^4$, $F(x) = 2x^4 + 5$, $F(x) = 2x^4 - 11$, ... are antiderivatives of $f(x)$. We therefore write $\int f(x) dx = 2x^4 + C$
$$f(x) = 12x^2$$

$$\int f(x) dx = 4x^3 + C$$

$$\int 2x dx = x^2 + C$$

$$\int 3 e^{3x} dx = e^{3x} + C$$