Increasing/decreasing, concavity

Ex.: $\quad f(x)=x^{3}-7 x-6$

$$
f^{\prime}(x)=3 x^{2}-7
$$

$$
\mathrm{f}^{\prime \prime}(\mathrm{x})=6 \mathrm{x}
$$

Increasing/decreasing

The function f is increasing at $\mathrm{x}=\mathrm{x}_{0}$, if the first derivative is positive, i.e. $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)>0$.
The function f is decreasing at $\mathrm{x}=\mathrm{x}_{0}$, if the first derivative is negative, i.e. $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)<0$.

Concavity

The graph of the function f is concave up at $x=x_{0}$, if the second derivative is positive, i.e. $f^{\prime \prime}\left(x_{0}\right)>0$.
The graph of the function f is concave down at $\mathrm{x}=\mathrm{x}_{0}$, if the second derivative is negative, i.e. $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{0}\right)<0$.

Relative maxima/minima

The function f has a relative maximum at $\mathrm{x}=\mathrm{x}_{0}$, if $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=0$ and $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{0}\right)<0$.
The function f has a relative minimum at $\mathrm{x}=\mathrm{x}_{0}$, if $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=0$ and $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{0}\right)>0$.
Note:
A relative maximum/minimum is not necessarily an absolute maximum/minimum.

Points of inflection

The function f has a point of inflection at $\mathrm{x}=\mathrm{x}_{0}$, if $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{0}\right)=0$ and $\mathrm{f}^{\prime \prime \prime}\left(\mathrm{x}_{0}\right) \neq 0$.

Ex.: $\quad f(x)=x^{3}-7 x-6$ (see page 1)

$$
f^{\prime}(x)=3 x^{2}-7
$$

$$
\mathrm{f}^{\prime \prime}(\mathrm{x})=6 \mathrm{x}
$$

$$
\mathrm{f}^{\prime \prime \prime}(\mathrm{x})=6
$$

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=0 \text { at } \mathrm{x}_{1}=\sqrt{\frac{7}{3}}=1.52 \ldots \text { and } \mathrm{x}_{2}=-\sqrt{\frac{7}{3}}=-1.52 \ldots \\
& \mathrm{f}^{\prime \prime}\left(\mathrm{x}_{1}\right)=6 \cdot \sqrt{\frac{7}{3}}=9.16 \ldots>0 \quad \Rightarrow \text { relative minimum at } \mathrm{x}_{1}=\sqrt{\frac{7}{3}} \\
& \mathrm{f}^{\prime \prime}\left(\mathrm{x}_{2}\right)=-6 \cdot \sqrt{\frac{7}{3}}=-9.16 \ldots<0 \quad \Rightarrow \text { relative maximum at } \mathrm{x}_{2}=-\sqrt{\frac{7}{3}}
\end{aligned}
$$

$$
\mathrm{f}^{\prime \prime}(\mathrm{x})=0 \text { at } \mathrm{x}_{3}=0
$$

$$
\mathrm{f}^{\prime \prime \prime}\left(\mathrm{x}_{3}\right)=6 \neq 0 \quad \Rightarrow \text { point of inflection at } \mathrm{x}_{3}=0
$$

Financial mathematics

Marginal cost/revenue/profit function = first derivative of the cost/revenue/profit function
Ex.: Cost function

$$
\begin{aligned}
& \mathrm{C}(\mathrm{x})=120 \mathrm{x}+\mathrm{x}^{2} \\
& \mathrm{C}^{\prime}(\mathrm{x})=120+2 \mathrm{x} \\
& \mathrm{R}(\mathrm{x})=168 \mathrm{x}-0.2 \mathrm{x}^{2} \\
& \mathrm{R}^{\prime}(\mathrm{x})=168-0.4 \mathrm{x} \\
& \mathrm{P}(\mathrm{x})=\mathrm{R}(\mathrm{x})-\mathrm{C}(\mathrm{x})=48 \mathrm{x}-1.2 \mathrm{x}^{2}
\end{aligned}
$$

\Rightarrow Marginal cost function
Revenue function
\Rightarrow Marginal revenue function
Profit function
\Rightarrow Marginal profit function

Average cost/revenue/profit function
Average cost function $\quad \overline{\mathrm{C}}(\mathrm{x}):=\frac{\mathrm{C}(\mathrm{x})}{\mathrm{x}} \quad$ where $\mathrm{C}(\mathrm{x})=$ cost function
Ex.: Cost function
$C(x)=3 x^{2}+4 x+2$
\Rightarrow Average cost function $\overline{\mathrm{C}}(\mathrm{x})=3 \mathrm{x}+4+\frac{2}{\mathrm{x}}$
Average revenue function
$\overline{\mathrm{R}}(\mathrm{x}):=\frac{\mathrm{R}(\mathrm{x})}{\mathrm{x}} \quad$ where $\mathrm{R}(\mathrm{x})=$ revenue function
Average profit function
$\overline{\mathrm{P}}(\mathrm{x}):=\frac{\mathrm{P}(\mathrm{x})}{\mathrm{x}} \quad$ where $\mathrm{P}(\mathrm{x})=$ profit function

Point of diminishing returns

Point of diminishing returns $=$ point of inflection on the graph
Ex.: Profit function
$P(x)=-0.2 x^{3}+3 x^{2}+6$

Point of diminishing returns: (5|56)

