Increasing/decreasing, concavity

Ex.: $f(x) = x^3 - 7x - 6$

Increasing/decreasing

The function f is **increasing** at $x = x_0$, if the **first derivative** is **positive**, i.e. $f'(x_0) > 0$. The function f is **decreasing** at $x = x_0$, if the **first derivative** is **positive**, i.e. $f'(x_0) > 0$.

The function f is **decreasing** at $x = x_0$, if the **first derivative** is **negative**, i.e. $f'(x_0) < 0$.

Concavity

The graph of the function f is concave up at $x = x_0$, if the second derivative is positive, i.e. $f''(x_0) > 0$. The graph of the function f is concave down at $x = x_0$, if the second derivative is negative, i.e. $f''(x_0) < 0$.

Relative maxima/minima

The function f has a **relative maximum** at $x = x_0$, if $f'(x_0) = 0$ and $f''(x_0) < 0$.

The function f has a **relative minimum** at $x = x_0$, if $f'(x_0) = 0$ and $f''(x_0) > 0$.

Note:

A relative maximum/minimum is not necessarily an absolute maximum/minimum.

Points of inflection

The function f has a **point of inflection** at $x = x_0$, if $f''(x_0) = 0$ and $f'''(x_0) \neq 0$.

Ex.:
$$f(x) = x^3 - 7x - 6$$
 (see page 1)

 $f'(x) = 3x^2 - 7$ f''(x) = 6x

f'''(x) = 6

$$f'(x) = 0 \text{ at } x_1 = \sqrt{\frac{7}{3}} = 1.52... \text{ and } x_2 = -\sqrt{\frac{7}{3}} = -1.52...$$

$$f''(x_1) = 6 \cdot \sqrt{\frac{7}{3}} = 9.16... > 0 \qquad \Rightarrow \text{ relative minimum at } x_1 = \sqrt{\frac{7}{3}}$$

$$f''(x_2) = -6 \cdot \sqrt{\frac{7}{3}} = -9.16... < 0 \qquad \Rightarrow \text{ relative maximum at } x_2 = -\sqrt{\frac{7}{3}}$$

$$f''(x) = 0 \text{ at } x_3 = 0$$

$$f'''(x_3) = 6 \neq 0 \qquad \Rightarrow \text{ point of inflection at } x_3 = 0$$

Financial mathematics

Marginal cost/revenue/profit function = first derivative of the cost/revenue/profit function

Ex.:	Cost function \Rightarrow Marginal cost function	$C(x) = 120x + x^{2}$ C'(x) = 120 + 2x
	Revenue function ⇒ Marginal revenue function	$R(x) = 168x - 0.2x^2$ R'(x) = 168 - 0.4x
	Profit function ⇒ Marginal profit function	$P(x) = R(x) - C(x) = 48x - 1.2x^2$ P'(x) = 48 - 2.4x

Average cost/revenue/profit function

Average cost function		$\overline{C}(x) := \frac{C(x)}{x}$	where $C(x) = cost$ function
Ex.:	Cost function \Rightarrow Average cost function	$C(x) = 3x^2 + 4x$ $\overline{C}(x) = 3x + 4 + 4x$	
Average revenue function		$\overline{R}(x) := \frac{R(x)}{x}$	where $R(x)$ = revenue function
Average profit function		$\overline{P}(x) := \frac{P(x)}{x}$	where $P(x) = profit$ function

Point of diminishing returns

Point of diminishing returns = point of inflection on the graph

Point of diminishing returns: (5|56)