Derivative

Function f			
f: $D \to \mathbb{R}$	where $D \subset \mathbb{R}$		
$x \rightarrow y = f(x)$			

Ex.: $f(x) = 24\sqrt{x+1} - 2x - 60$

Why?

- relative **maximum/minimum** (slope = 0)
- increasing (slope > 0), decreasing (slope < 0)

- concavity (concave up if slope increases, concave down if slope decreases), points of inflection

Economics

- maximum/minimum of costs/revenue/profit
- tendency of costs/revenue/profit
- marginal costs/revenue/profit (change of costs/revenue/profit if number x of items increases by one)

Definition

The slope of the tangent to the graph of f at the point $A(x_0 | f(x_0))$ is called the **derivative** or the **rate of change of f at** x_0 , denoted $f'(x_0)$.

How?

The slope of the secant through the points $A(x_0 | f(x_0))$ and $B(x_0+\Delta x | f(x_0+\Delta x))$ tends towards the slope of the tangent at $A(x_0 | f(x_0))$ as Δx tends towards 0.

Ex.:

Definition

Suppose that the rate of change $f'(x_0)$ exists for all $x_0 \in D_1$, where $D_1 \subset D$.

The function f' f: $D_1 \rightarrow \mathbb{R}$ $x \rightarrow y = f'(x)$

is called the **derivative of the function f**.

 $\begin{array}{ll} \text{Ex. 1:} & \text{f: } \mathbb{R} \to \mathbb{R} & \text{f': } \mathbb{R} \to \mathbb{R} \\ & x \to \ y = f(x) = x^2 & x \to \ y = f'(x) = 2x \end{array}$

Ex. 2: f:
$$D \to \mathbb{R}$$

 $x \to y = f(x) = 24\sqrt{x+1} - 2x - 60$
f: $D_1 \to \mathbb{R}$
 $x \to y = f'(x) = \frac{12}{\sqrt{x+1}} - 2$

