Derivative

Function f	
$f:$	$D \rightarrow \mathbb{R} \quad$ where $D \subset \mathbb{R}$
x	$\rightarrow y=f(x)$

Ex.: $\quad f(x)=24 \sqrt{x+1}-2 x-60$

What?
Slope of the tangent to the graph of the function f at a certain point $A\left(x_{0} \mid f\left(x_{0}\right)\right)$.

Why?

- relative maximum/minimum (slope $=0$)
- increasing (slope >0), decreasing (slope <0)
- concavity (concave up if slope increases, concave down if slope decreases), points of inflection

Economics

- maximum/minimum of costs/revenue/profit
- tendency of costs/revenue/profit
- marginal costs/revenue/profit (change of costs/revenue/profit if number x of items increases by one)

Definition

The slope of the tangent to the graph of f at the point $A\left(x_{0} \mid f\left(x_{0}\right)\right)$ is called the derivative or the rate of change of f at \mathbf{x}_{0}, denoted $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)$.

How?
The slope of the secant through the points $A\left(x_{0} \mid f\left(x_{0}\right)\right)$ and $B\left(x_{0}+\Delta x \mid f\left(x_{0}+\Delta x\right)\right)$ tends towards the slope of the tangent at $\mathrm{A}\left(\mathrm{x}_{0} \mid \mathrm{f}\left(\mathrm{x}_{0}\right)\right)$ as $\Delta \mathrm{x}$ tends towards 0 .

Ex.: $\quad \mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$

$$
x \rightarrow y=f(x)=x^{2}
$$

$$
\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=2 \mathrm{x}_{0}
$$

Definition

Suppose that the rate of change $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)$ exists for all $\mathrm{x}_{0} \in \mathrm{D}_{1}$, where $\mathrm{D}_{1} \subset \mathrm{D}$.
The function f^{\prime}
$\mathrm{f}^{\prime}: \mathrm{D}_{1} \rightarrow \mathbb{R}$
$x \rightarrow y=f^{\prime}(x)$
is called the derivative of the function f.

Ex. 1: $\quad \mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$
$x \rightarrow y=f(x)=x^{2}$
$\mathrm{f}^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$
$x \rightarrow y=f^{\prime}(x)=2 x$

Ex. 2: $\quad \mathrm{f}: \mathrm{D} \rightarrow \mathbb{R}$
$x \rightarrow y=f(x)=24 \sqrt{x+1}-2 x-60$
$\mathrm{f}^{\prime}: \mathrm{D}_{1} \rightarrow \mathbb{R}$
$x \rightarrow y=f^{\prime}(x)=\frac{12}{\sqrt{x+1}}-2$

