Exponential function

Definition

```
\(\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}\)
    \(x \rightarrow y=f(x)=c \cdot a^{x} \quad(a \in \mathbb{R}+\backslash\{1\}, c \in \mathbb{R} \backslash\{0\})\)
    \(a>1\) : exponential growth
    \(a<1\) : exponential decay
```


Graph

$\cdots \cdots \cdot c=10, a=0.5$
—— $c=10, a=1.5$

- $c=10, a=2$

Examples

1. Compound interest (exponential growth)

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{n}}=\mathrm{C}_{0} \cdot \mathrm{q}^{\mathrm{n}} & \mathrm{C}_{0}=\text { initial capital } \\
& \mathrm{C}_{\mathrm{n}}=\text { capital after } \mathrm{n} \text { compounding periods } \\
& \mathrm{n}=\text { number of compounding periods (typically: } 1 \text { compounding period = 1 year }) \\
& \mathrm{q}=\text { growth factor }=1+\mathrm{r}(\mathrm{q}>1) \\
& \mathrm{r}=\text { interest rate per compounding period }
\end{array}
$$

Ex.: $\quad C_{0}:=1000, r:=2 \%=0.02 \Rightarrow q=1.02 \Rightarrow C_{n}=1000 \cdot 1.02^{n}$
2. Consumer price index (exponential decay)
$\mathrm{P}(\mathrm{t})=\mathrm{P}_{0} \cdot \mathrm{q}^{\mathrm{t}} \quad \mathrm{P}_{0}=$ initial purchasing power
$\mathrm{P}(\mathrm{t})=$ purchasing power at time t (typically: t in years)
$\mathrm{q}=$ decay factor $(\mathrm{q}<1)$
Ex.: $\quad P_{0}:=100, q:=0.97 \Rightarrow P(t)=100 \cdot 0.97^{t}$

