Review exercises 2 Differential calculus, integral calculus

Problems

R2.1 Decide whether the following statements are true or false:
a) "The derivative of a function is a function."
b) "The derivative of a function at a particular value of the variable is a number."
c) "The function f has a relative maximum at $\mathrm{x}=\mathrm{x}_{1}$ if $\mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)=0$ and $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{1}\right)>0$."
d) "If $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{2}\right)=0$ and $\mathrm{f}^{\prime \prime \prime}\left(\mathrm{x}_{2}\right)<0$, then the function f has a point of inflection at $\mathrm{x}=\mathrm{x}_{2}$."
e) "Suppose that the function f has a relative maximum at $\mathrm{x}=\mathrm{x}_{1}$. If there are no other relative maxima and if there is no relative minimum at all, then the relative maximum is the absolute maximum of f ."
f) \quad If $g^{\prime}=f$, then g is an antiderivative of $f . "$
g) "f with $f(x)=2 x+20$ is an antiderivative of g with $g(x)=x^{2}$."
h) "f with $\mathrm{f}(\mathrm{x})=3 \mathrm{x}$ has infinitely many antiderivatives."
i) "The indefinite integral of a function is a set of functions."

R2.2 Determine the value $f\left(x_{0}\right)$, the first derivative $f^{\prime}\left(x_{0}\right)$, and the second derivative $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{0}\right)$ at x_{0} for the following functions f:
a) $\quad f(x)=4 x^{2}\left(x^{2}-1\right)$
i) $\quad \mathrm{x}_{0}=0$
ii) $\quad x_{0}=-1$
b) $\quad f(x)=\left(-3 x^{2}+2 x-1\right) \cdot e^{x}$
i) $\quad x_{0}=0$
ii) $\quad \mathrm{x}_{0}=-2$
c) $\quad f(x)=\left(x^{2}+2\right) \cdot e^{-3 x}$
i) $\quad x_{0}=1$
ii) $\quad \mathrm{x}_{0}=-\frac{1}{3}$

R2.3 For each function, find ...
i) ... the relative maxima and minima.
ii) ... the points of inflection.
a) $\quad f(x)=2 x^{3}-9 x^{2}+12 x-1$
b) $\quad f(x)$ as in R2.2 a)

R2.4 The total revenue function for a commodity is given by

$$
R(x)=36 x-0.01 x^{2}
$$

Find the maximum revenue ...
a) ... if production is not limited to a certain number of units.
b) ... if production is limited to at most 1500 units.

R2.5 If the total cost function for a product is

$$
\mathrm{C}(\mathrm{x})=100+\mathrm{x}^{2}
$$

producing how many units x will result in a minimum average cost per unit? Find the minimum average cost.

R2.6 A firm can produce only 1000 units per month. The monthly total cost ist given by

$$
\mathrm{C}(\mathrm{x})=300+200 \mathrm{x}
$$

dollars, where x is the number produced. If the total revenue is given by

$$
R(x)=250 x-\frac{1}{100} x^{2}
$$

dollars, how many items should the firm produce for maximum profit? Find the maximum profit.

R2.7 Determine the indefinite integrals below:
a) $\int\left(x^{4}-3 x^{3}-6\right) d x$
b) $\quad \int\left(\frac{1}{2} x^{6}-\frac{2}{3 x^{4}}\right) d x$

R2.8 The equation of the third derivative $f^{\prime \prime \prime}$ of a function f is given as follows:

$$
\mathrm{f}^{\prime \prime \prime}(\mathrm{x})=3 \mathrm{x}+1
$$

Find the equation of the function f such that $f^{\prime \prime}(0)=0, f^{\prime}(0)=1, f(0)=2$

R2.9 If the marginal cost (in dollars) for producing a product is $C^{\prime}(x)=5 x+10$, with a fixed cost of $\$ 800$, what will be the cost of producing 20 units?

R2.10 A certain firm's marginal cost $\mathrm{C}^{\prime}(\mathrm{x})$ and the derivative of the average revenue $\overline{\mathrm{R}}^{\prime}(\mathrm{x})$ are given as follows:

$$
\begin{aligned}
& \mathrm{C}^{\prime}(\mathrm{x})=6 \mathrm{x}+60 \\
& \overline{\mathrm{R}}^{\prime}(\mathrm{x})=-1
\end{aligned}
$$

The total cost and revenue of production of 10 items are $\$ 1000$ and $\$ 1700$, respectively.
How many units will result in a maximum profit? Find the maximum profit.

Answers

R2.1	a)	true	b)	true	c) false
	d)	true	e)	true	f) true
	g)	false	h)	true	i) true
R2.2	a)	$\begin{aligned} & \mathrm{f}^{\prime}(\mathrm{x})=16 \mathrm{x}^{3}-8 \mathrm{x} \\ & \mathrm{f}^{\prime \prime}(\mathrm{x})=48 \mathrm{x}^{2}-8 \end{aligned}$			
			$\mathrm{f}(0)=0$	$\mathrm{f}^{\prime}(0)=0$	$\mathrm{f}^{\prime \prime}(0)=-8$
		ii)	$\mathrm{f}(-1)=0$	$\mathrm{f}^{\prime}(-1)=-8$	$\mathrm{f}^{\prime \prime}(-1)=40$
	b)	$\begin{aligned} & f^{\prime}(x)=\left(-3 x^{2}-4 x+1\right) \cdot e^{x} \\ & f^{\prime \prime}(x)=\left(-3 x^{2}-10 x-3\right) \cdot e^{x} \end{aligned}$			
			$f(0)=-1$	$\mathrm{f}^{\prime}(0)=1$	$\mathrm{f}^{\prime \prime}(0)=-3$
			$\begin{aligned} f(-2) & =-17 \cdot f \\ f^{\prime}(-2) & =-3 \cdot e \\ f^{\prime \prime}(-2) & =5 \cdot e^{-} \end{aligned}$	$\begin{aligned} & 2.300 \ldots \\ & 0.406 \ldots \\ & 676 \ldots \end{aligned}$	
	c)	$\begin{aligned} & f^{\prime}(x)=\left(-3 x^{2}+2 x-6\right) \cdot e^{-3 x} \\ & f^{\prime \prime}(x)=\left(9 x^{2}-12 x+20\right) \cdot e^{-3 x} \end{aligned}$			
		i)$\begin{aligned} & f(1)=3 \cdot e^{-3}=0.149 \ldots \\ & f^{\prime}(1)=-7 \cdot e^{-3}=-0.348 \ldots \\ & f^{\prime \prime}(1)=17 \cdot e^{-3}=0.846 \ldots \end{aligned}$			
		$\text { ii) } \quad \begin{aligned} & \mathrm{f}\left(-\frac{1}{3}\right)=\frac{19}{9} \mathrm{e}=5.738 \ldots \\ & \mathrm{f}^{\prime}\left(-\frac{1}{3}\right)=-7 \mathrm{e}=-19.027 \ldots \\ & \mathrm{f}^{\prime \prime}\left(-\frac{1}{3}\right)=25 \mathrm{e}=67.957 \ldots \end{aligned}$			

R2.3 a) $f(x)=2 x^{3}-9 x^{2}+12 x-1$
$f^{\prime}(x)=6 x^{2}-18 x+12$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=12 \mathrm{x}-18$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=12$
i) $\quad f^{\prime}(x)=0$ at $x_{1}=1$ and $x_{2}=2$

$$
\begin{array}{lll}
\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{1}\right)=-6<0 & \Rightarrow & \text { relative maximum at } \mathrm{x}_{1}=1 \\
\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{2}\right)=6>0 & \Rightarrow & \text { relative minimum at } \mathrm{x}_{2}=2
\end{array}
$$

ii) $\quad \mathrm{f}^{\prime \prime}(\mathrm{x})=0$ at $\mathrm{x}_{3}=\frac{3}{2}$
$\mathrm{f}^{\prime \prime \prime}\left(\mathrm{x}_{3}\right)=12 \neq 0 \quad \Rightarrow \quad$ point of inflection at $\mathrm{x}_{3}=\frac{3}{2}$
b) $\quad f(x)=4 x^{2}\left(x^{2}-1\right)$
$f^{\prime}(x)=16 x^{3}-8 x=8 x\left(2 x^{2}-1\right)$
$f^{\prime \prime}(x)=48 x^{2}-8=8\left(6 x^{2}-1\right)$
$\mathrm{f}^{\prime \prime \prime}(\mathrm{x})=96 \mathrm{x}$
i) $\quad \mathrm{f}^{\prime}(\mathrm{x})=0$ at $\mathrm{x}_{1}=0, \mathrm{x}_{2}=\frac{1}{\sqrt{2}}$, and $\mathrm{x}_{3}=-\frac{1}{\sqrt{2}}$
$\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{1}\right)=-8<0 \quad \Rightarrow \quad$ relative maximum at $\mathrm{x}_{1}=0$
$\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{2}\right)=16>0 \quad \Rightarrow \quad$ relative minimum at $\mathrm{x}_{2}=\frac{1}{\sqrt{2}}$
$\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{3}\right)=16>0 \quad \Rightarrow \quad$ relative minimum at $\mathrm{x}_{3}=-\frac{1}{\sqrt{2}}$

$$
\begin{align*}
& \mathrm{f}^{\prime \prime}(\mathrm{x})=0 \text { at } \mathrm{x}_{3}=\frac{1}{\sqrt{6}} \\
& \mathrm{f}^{\prime \prime \prime}\left(\mathrm{x}_{3}\right)=\frac{96}{\sqrt{6}} \neq 0 \quad \Rightarrow \quad \text { point of inflection at } \mathrm{x}_{3}=\frac{1}{\sqrt{6}}
\end{align*}
$$

R2.4 a) Relative maximum at $\mathrm{x}_{1}=1800$
$R\left(x_{1}\right)=\$ 32{ }^{\prime} 400$
$R(x)<R\left(x_{1}\right)$ if $x \neq x_{1}$ as there is no relative minimum
$\Rightarrow R=\$ 32 ' 400$ is the absolute maximum revenue at $x=1800$.
b) Relative maximum at $\mathrm{x}=1800$ lies outside the possible interval $0 \leq \mathrm{x} \leq 1500$ $R(1500)=\$ 31 ' 500>R(0)=0 \$$
$\Rightarrow R=\$ 31^{\prime} 500$ is the absolute maximum revenue at $x=1500$.

R2.5 $\bar{C}(x)=\frac{C(x)}{x}=\frac{100}{x}+x$
$\overline{\mathrm{C}}(\mathrm{x})$ has a relative minimum at $\mathrm{x}_{1}=10$
$\overline{\mathrm{C}}(20)=\$ 20$
$\overline{\mathrm{C}}(\mathrm{x})>\overline{\mathrm{C}}\left(\mathrm{x}_{1}\right)$ if $\mathrm{x} \neq \mathrm{x}_{1}$ as there is no relative maximum
$\Rightarrow \overline{\mathrm{C}}=\$ 20$ is the absolute minimum average cost at $\mathrm{x}=10$.

R2.6 $\quad \mathrm{P}(\mathrm{x})=\mathrm{R}(\mathrm{x})-\mathrm{C}(\mathrm{x})=-\frac{1}{100} \mathrm{x}^{2}+50 \mathrm{x}-300$
$\mathrm{P}(\mathrm{x})$ has a relative maximum at $\mathrm{x}_{1}=2500$. This is outside the possible interval $0 \leq \mathrm{x} \leq 1000$
$\mathrm{P}(1000)=\$ 39^{\prime} 700>\mathrm{P}(0)=-300 \$$
$\Rightarrow \mathrm{P}=\$ 39^{\prime} 700$ is the absolute maximum profit at the endpoint $\mathrm{x}=1000$.

R2.7 a) $\int\left(x^{4}-3 x^{3}-6\right) d x=\frac{x^{5}}{5}+\frac{3 x^{4}}{4}-6 x+C$
b) $\quad \int\left(\frac{1}{2} x^{6}-\frac{2}{3 x^{4}}\right) d x=\frac{x^{7}}{14}-\frac{2}{9 x^{3}}+C$

R2.8 $f(x)=\frac{x^{4}}{8}+\frac{x^{3}}{6}+x+2$

R2.9 $\mathrm{C}(20)=\$ 2000$
Hint:

- First, determine the cost function $C(x) \Rightarrow C(x)=\frac{5}{2} x^{2}+10 x+800$

R2.10 $\mathrm{P}=\$ 800$ is the absolute maximum profit at $\mathrm{x}=15$ units.
Hints:

- Determine the cost function $C(x) \Rightarrow C(x)=3 x^{2}+60 x+100$
- Determine the average revenue function $\overline{\mathrm{R}}(\mathrm{x}) \Rightarrow \overline{\mathrm{R}}(\mathrm{x})=-\mathrm{x}+\mathrm{C}$
- Determine the revenue function $R(x) \Rightarrow R(x)=-x^{2}+180 x$
- Find the profit function $P(x) \Rightarrow P(x)=-4 x^{2}+120 x-100$
- Find the relative maximum of the profit function $P(x)$.
- Check if the relative maximum is the absolute maximum.

