Review exercises 2 Differential calculus, integral calculus

Problems

- R2.1 Decide whether the following statements are true or false:
 - a) "The derivative of a function is a function."
 - b) "The derivative of a function at a particular value of the variable is a number."
 - c) "The function f has a relative maximum at $x = x_1$ if $f'(x_1) = 0$ and $f''(x_1) > 0$."
 - d) "If $f''(x_2) = 0$ and $f'''(x_2) < 0$, then the function f has a point of inflection at $x = x_2$."
 - e) "Suppose that the function f has a relative maximum at $x = x_1$. If there are no other relative maxima and if there is no relative minimum at all, then the relative maximum is the absolute maximum of f."
 - f) "If g' = f , then g is an antiderivative of f."
 - g) "f with f(x) = 2x + 20 is an antiderivative of g with $g(x) = x^2$."
 - h) "f with f(x) = 3x has infinitely many antiderivatives."
 - i) "The indefinite integral of a function is a set of functions."
- R2.2 Determine the value $f(x_0)$, the first derivative $f'(x_0)$, and the second derivative $f''(x_0)$ at x_0 for the following functions f:
 - $f(x) = 4x^2(x^2 1)$ a) i) $x_0 = 0$ $x_0 = -1$ ii) $f(x) = (-3x^2 + 2x - 1) \cdot e^x$ b) $x_0 = 0$ i) ii) $x_0 = -2$ $f(x) = (x^2 + 2) \cdot e^{-3x}$ c) i) $x_0 = 1$ $x_0 = -\frac{1}{2}$ ii)

R2.3 For each function, find ...

- i) ... the relative maxima and minima.
- ii) ... the points of inflection.
- a) $f(x) = 2x^3 9x^2 + 12x 1$
- b) f(x) as in R2.2 a)
- R2.4 The total revenue function for a commodity is given by

 $R(x) = 36x - 0.01x^2$

Find the maximum revenue ...

- a) ... if production is not limited to a certain number of units.
- b) ... if production is limited to at most 1500 units.

R2.5 If the total cost function for a product is

$$C(x) = 100 + x^2$$

producing how many units x will result in a minimum average cost per unit? Find the minimum average cost.

R2.6 A firm can produce only 1000 units per month. The monthly total cost ist given by

C(x) = 300 + 200x

dollars, where x is the number produced. If the total revenue is given by

$$R(x) = 250x - \frac{1}{100}x^2$$

dollars, how many items should the firm produce for maximum profit? Find the maximum profit.

R2.7 Determine the indefinite integrals below:

a)
$$\int (x^4 - 3x^3 - 6) dx$$

b) $\int (\frac{1}{2}x^6 - \frac{2}{3x^4}) dx$

R2.8 The equation of the third derivative f'' of a function f is given as follows:

$$f'''(x) = 3x + 1$$

Find the equation of the function f such that f''(0) = 0, f'(0) = 1, f(0) = 2

- R2.9 If the marginal cost (in dollars) for producing a product is C'(x) = 5x + 10, with a fixed cost of \$800, what will be the cost of producing 20 units?
- R2.10 A certain firm's marginal cost C'(x) and the derivative of the average revenue $\overline{R}'(x)$ are given as follows:

$$C'(x) = 6x + 60$$

$$\overline{R}'(x) = -1$$

The total cost and revenue of production of 10 items are \$1000 and \$1700, respectively.

How many units will result in a maximum profit? Find the maximum profit.

Answers								
R2.1	a)	true		b)	true	c)	false	
	d)	true		e)	true	f)	true	
	g)	false		h)	true	i)	true	
R2.2	a)	f'(x) = f''(x) =	$f(x) = 16x^3 - 8x$ $f(x) = 48x^2 - 8$					
		i)	f(0) = 0		f'(0) = 0	f''(0) =	- 8	
		ii)	f(-1) = 0	0	f'(-1) = - 8	f"(-1) =	40	
	b)	f'(x) = (f''(x) =	$(-3x^2 - 4x)$ $(-3x^2 - 10)$	$(x + 1) \cdot e^x$ $(0x - 3) \cdot e^x$	κ.			
		i)	f(0) = -1 $f'(0) = 1$			f''(0) = -3		
		ii)	$f(-2) = -17 \cdot e^{-2} = -2.300$ $f'(-2) = -3 \cdot e^{-2} = -0.406$ $f''(-2) = 5 \cdot e^{-2} = 0.676$					
	c)	f'(x) = (f''(x) =	$(-3x^{2} + 2x - 6) \cdot e^{-3x}$ $(9x^{2} - 12x + 20) \cdot e^{-3x}$					
		i)	$f(1) = 3 \cdot e^{-3} = 0.149$ $f'(1) = -7 \cdot e^{-3} = -0.348$ $f''(1) = 17 \cdot e^{-3} = 0.846$					
		ii)	$f\left(-\frac{1}{3}\right) = f'\left(-\frac{1}{3}\right) = f''\left(-\frac{1}{3}\right) = f''\left(-\frac{1}{3}\right) = f'''\left(-\frac{1}{3}\right) = f''''\left(-\frac{1}{3}\right) = f'''''''''''''''''''''''''''''''''''$	$\frac{19}{9}e = 5.7$ = -7e = -1 = 25e = 6	738 9.027 7.957			
R2.3	a)	f(x) = 2 f'(x) = 0 f''(x) = f'''(x) =	$2x^{3} - 9x^{2} + 12x - 1$ $6x^{2} - 18x + 12$: 12x - 18 = 12					
		i)	f'(x) = 0 $f''(x_1) =$ $f''(x_2) =$) at $x_1 = 2$ - 6 < 0 6 > 0	1 and $x_2 = 2$	\Rightarrow	relative maximum at $x_1 = 1$ relative minimum at $x_2 = 2$	
		ii)	f''(x) = 0	0 at $x_3 =$	$\frac{3}{2}$			
			f'''(x ₃) =	12 ≠ 0		⇒	point of inflection at $x_3 = \frac{3}{2}$	
	b)	f(x) = 4 f'(x) = 1 f''(x) = 1 f''(x) = 1	$ \begin{aligned} &= 4x^{2}(x^{2} - 1) \\ &= 16x^{3} - 8x = 8x(2x^{2} - 1) \\ &= 48x^{2} - 8 = 8(6x^{2} - 1) \\ &= 96x \end{aligned} $					
		i)	f'(x) = 0 $f''(x_1) =$ $f''(x_2) =$ $f''(x_3) =$) at $x_1 = 0$ - 8 < 0 16 > 0 16 > 0	0, $x_2 = \frac{1}{\sqrt{2}}$, and x_3	$= -\frac{1}{\sqrt{2}}$ \Rightarrow \Rightarrow \Rightarrow	relative maximum at $x_1 = 0$ relative minimum at $x_2 = \frac{1}{\sqrt{2}}$ relative minimum at $x_3 = -\frac{1}{\sqrt{2}}$	

ii)
$$f'(x) = 0$$
 at $x_3 = \frac{1}{\sqrt{6}}$
 $f''(x_3) = \frac{96}{\sqrt{6}} \neq 0 \qquad \Rightarrow \qquad \text{point of inflection at } x_3 = \frac{1}{\sqrt{6}}$

R2.4 a) Relative maximum at
$$x_1 = 1800$$

 $R(x_1) = $32'400$
 $R(x) < R(x_1)$ if $x \neq x_1$ as there is no relative minimum
 $\Rightarrow R = $32'400$ is the absolute maximum revenue at $x = 1800$

b) Relative maximum at x = 1800 lies outside the possible interval
$$0 \le x \le 1500$$

R(1500) = $31'500 > R(0) = 0$
 $\Rightarrow R = 31'500$ is the **absolute** maximum revenue at x = 1500.

R2.5
$$\overline{C}(x) = \frac{C(x)}{x} = \frac{100}{x} + x$$

 $\overline{C}(x)$ has a **relative** minimum at $x_1 = 10$
 $\overline{C}(20) = \$20$
 $\overline{C}(x) > \overline{C}(x_1)$ if $x \neq x_1$ as there is no relative maximum
 $\Rightarrow \overline{C} = \20 is the **absolute** minimum average cost at $x = 10$.

R2.6
$$P(x) = R(x) - C(x) = -\frac{1}{100}x^2 + 50x - 300$$

P(x) has a **relative** maximum at x₁ = 2500. This is outside the possible interval $0 \le x \le 1000$
P(1000) = $339'700 > P(0) = -300$ \$
 $\Rightarrow P = 339'700$ is the **absolute** maximum profit at the endpoint x = 1000.

R2.7 a)
$$\int (x^4 - 3x^3 - 6) dx = \frac{x^5}{5} + \frac{3x^4}{4} - 6x + C$$

b)
$$\int \left(\frac{1}{2}x^6 - \frac{2}{3x^4}\right) dx = \frac{x^7}{14} - \frac{2}{9x^3} + C$$

R2.8
$$f(x) = \frac{x^4}{8} + \frac{x^3}{6} + x + 2$$

R2.9 C(20) = \$2000

Hint:

- First, determine the cost function $C(x) \Rightarrow C(x) = \frac{5}{2}x^2 + 10x + 800$

R2.10 P = \$800 is the absolute maximum profit at x = 15 units.

Hints:

- Determine the cost function $C(x) \Rightarrow C(x) = 3x^2 + 60x + 100$
- Determine the average revenue function $\overline{R}(x) \Rightarrow \overline{R}(x) = -x + C$
- Determine the revenue function $R(x) \Rightarrow R(x) = -x^2 + 180x$
- Find the profit function $P(x) \Rightarrow P(x) = -4x^2 + 120x 100$
- Find the relative maximum of the profit function P(x).
- Check if the relative maximum is the absolute maximum.