Exercises 16 Indefinite integral Antiderivative, indefinite integral, coefficient/sum rule

Objectives

- be able to determine an antiderivative and the indefinite integral of a constant/basic power/basic exponential function.
- be able to apply the coefficient/sum rule to determine the indefinite integral of a function.
- be able to determine the cost/average cost/revenue/profit function if the marginal cost/average cost/revenue/profit function is known.

Problems

16.1 Determine the indefinite integrals below:
a) $\quad \int x^{3} d x$
b) $\quad \int x^{2} d x$
c) $\quad \int \frac{1}{x^{4}} d x$
d) $\quad \int \frac{1}{x^{2}} d x$
e) $\quad \int x^{-5} d x$
f) $\quad \int 4 d x$
g) $\quad \int(-7) d x$
h) $\quad \int e^{x} d x$
16.2 Determine the indefinite integral of the following functions f :
a) $\quad f(x)=x^{5}$
b) $\quad f(x)=3 x^{2}$
c) $\quad f(x)=x^{3}+2 x^{2}-5$
d) $\quad f(x)=\frac{1}{2} x^{5}-\frac{2}{3 x^{2}}$
e) $\quad f(x)=\frac{1}{2} x^{3}-2 x^{2}+4 x-5$
f) $\quad f(x)=x^{10}-\frac{1}{2} x^{3}-x$
16.3 Find two antiderivatives $F_{1}(x)$ and $F_{2}(x)$ of $f(x)$ such that the stated conditions are fulfilled.
a) $f(x)=10 x^{2}+x$
$\mathrm{F}_{1}(0)=3$
$\mathrm{F}_{2}(0)=-1$
b) $\quad f(x)=x^{3}+3 x+1$
$\mathrm{F}_{1}(2)=5$
$\mathrm{F}_{2}(4)=-8$
16.4 Suppose that we know the equation of the derivative f^{\prime} of a function f :

$$
\mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}-50 \mathrm{x}+250
$$

Determine the equation of the function f, if ...
a) $\quad \ldots \mathrm{f}(0)=500$.
b) $\quad \ldots \mathrm{f}(10)=2500$.
16.5 Suppose that we know the equation of the second derivative $f^{\prime \prime}$ of a function f :

$$
\mathrm{f}^{\prime \prime}(\mathrm{x})=2 \mathrm{x}-1
$$

Find the equation of ...
a) $\quad .$. the first derivative f^{\prime} such that $f^{\prime}(2)=4$.
b) $\quad . \quad$ the function f such that $f^{\prime}(2)=4$ and $f(1)=-1$.
16.6 If the monthly marginal cost (in dollars) for a product is $\mathrm{C}^{\prime}(\mathrm{x})=2 \mathrm{x}+100$, with fixed costs amounting to $\$ 200$, find the total cost function for the month.
16.7 If the marginal cost (in dollars) for a product is $\mathrm{C}^{\prime}(\mathrm{x})=4 \mathrm{x}+2$, and the production of 10 units results in a total cost of $\$ 300$, find the total cost function.
16.8 If the marginal cost (in dollars) for a product is $C^{\prime}(x)=4 x+40$, and the total cost of producing 25 units is $\$ 3000$, what will be the cost of producing 30 units?
16.9 A firm knows that its marginal cost for a product is $\mathrm{C}^{\prime}(\mathrm{x})=3 \mathrm{x}+20$, that its marginal revenue is $R^{\prime}(x)=44-5 x$, and that the cost of production and sale of 80 units is $\$ 11^{\prime} 400$.
a) Find the profit function $\mathrm{P}(\mathrm{x})$.
b) How many units will result in a maximum profit?

Hint:

- The revenue R is zero if no unit is sold. Thus, $\mathrm{R}(0)=\$ 0$.
16.10 Suppose that the marginal revenue $\mathrm{R}^{\prime}(\mathrm{x})$ and the derivative of the average cost $\overline{\mathrm{C}}^{\prime}(\mathrm{x})$ are given as follows:

$$
\begin{aligned}
& \mathrm{R}^{\prime}(\mathrm{x})=100 \\
& \overline{\mathrm{C}}^{\prime}(\mathrm{x})=2-\frac{1800}{\mathrm{x}^{2}}
\end{aligned}
$$

The production of 10 units results in a total cost of $\$ 1000$.
a) Find the total cost function $\mathrm{C}(\mathrm{x})$.
b) How many units will result in a maximum profit? Find the maximum profit.

Answers

16.1 a) $\int x^{3} d x=\frac{x^{4}}{4}+C$
b) $\quad \int x^{2} d x=\frac{x^{3}}{3}+C$
c) $\quad \int \frac{1}{x^{4}} d x=-\frac{1}{3 x^{3}}+C$
d) $\int \frac{1}{x^{2}} d x=-\frac{1}{x}+C$
e) $\quad \int x^{-5} d x=-\frac{1}{4 x^{4}}+C$
f) $\quad \int 4 d x=4 x+C$
g) $\quad \int(-7) d x=-7 x+C$
h) $\quad \int e^{x} d x=e^{x}+C$
$16.2 \quad$ a) $\quad \int f(x) d x=\frac{x^{6}}{6}+C$
b) $\quad \int f(x) d x=x^{3}+C$
c) $\quad \int f(x) d x=\frac{x^{4}}{4}+\frac{2 x^{3}}{3}-5 x+C$
d) $\quad \int f(x) d x=\frac{x^{6}}{12}+\frac{2}{3 x}+C$
e) $\quad \int f(x) d x=\frac{x^{4}}{8}-\frac{2 x^{3}}{3}+2 x^{2}-5 x+C$
f) $\quad \int f(x) d x=\frac{x^{11}}{11}-\frac{x^{4}}{8}-\frac{x^{2}}{2}+C$
16.3
a) $\quad \mathrm{F}_{1}(\mathrm{x})=\frac{10 \mathrm{x}^{3}}{3}+\frac{\mathrm{x}^{2}}{2}+3$
$\mathrm{F}_{2}(\mathrm{x})=\frac{10 \mathrm{x}^{3}}{3}+\frac{\mathrm{x}^{2}}{2}-1$
b) $\quad \mathrm{F}_{1}(\mathrm{x})=\frac{\mathrm{x}^{4}}{4}+\frac{3 \mathrm{x}^{2}}{2}+\mathrm{x}-7$
$F_{2}(x)=\frac{x^{4}}{4}+\frac{3 x^{2}}{2}+x-100$

Hints:

- First, determine the indefinite integral of $f(x)$.
- Then, find the value of the integration constant such that the stated condition is fulfilled.
16.4 a) $f(x)=x^{3}-25 x^{2}+250 x+500$
b) $\quad f(x)=x^{3}-25 x^{2}+250 x+1500$
$16.5 \quad$ a) $\quad f^{\prime}(x)=x^{2}-x+2$
b) $\quad f(x)=\frac{x^{3}}{3}-\frac{x^{2}}{2}+2 x-\frac{17}{6}$
16.6 $C(x)=x^{2}+100 x+200$

Hints:

- First integrate the marginal cost function $C^{\prime}(x) \Rightarrow C(x)=x^{2}+100 x+C(C \in \mathbb{R})$
- Determine the integration constant C using the fact that $C(0)=\$ 200 \Rightarrow C=200$
16.7 $C(x)=2 x^{2}+2 x+80$
$C(30)=\$ 3750$
Hint:
- First, determine the cost function $C(x) \Rightarrow C(x)=2 x^{2}+40 x+750$.
16.9 a) $\quad P(x)=-4 x^{2}+24 x-200$

Hints:

- Find the cost and revenue functions $C(x)$ and $R(x) \Rightarrow C(x)=\frac{3}{2} x^{2}+20 x+200, R(x)=44 x-\frac{5}{2} x^{2}$
- Then, determine the profit function $\mathrm{P}(\mathrm{x})$.
b) $\quad \mathrm{x}=3$

Hints:

- Find the relative maximum of the profit function $\mathrm{P}(\mathrm{x})$.
- Check if the relative maximum is the absolute maximum.
16.10 a) $\quad C(x)=2 x^{2}-100 x+1800$

Hints:

- First, determine the average cost function $\overline{\mathrm{C}}(\mathrm{x}) \Rightarrow \overline{\mathrm{C}}(\mathrm{x})=2 \mathrm{x}+\frac{1800}{\mathrm{x}}+\mathrm{C}_{1}$
- Then, determine the cost function $\mathrm{C}(\mathrm{x})$.
b) $\quad \mathrm{P}=\$ 3200$ is the absolute maximum profit at $\mathrm{x}=50$ units.

Hints:

- First, determine the revenue function $R(x) \Rightarrow R(x)=100 x$
- Then, find the profit function $P(x) \Rightarrow P(x)=-2 x^{2}+200 x-1800$
- Find the relative maximum of the profit function $\mathrm{P}(\mathrm{x})$.
- Check if the relative maximum is the absolute maximum.

