Exercises 10 Exponential function and equations Exponential equations, logarithm, compound interest

Objectives

- be able to determine simple logarithms without a calculator.
- be able to solve simple exponential equations without a calculator.
- be able to calculate a common logarithm, a natural logarithm with a calculator.
- be able to apply one of the logarithmic properties in order to solve simple exponential equations.
- be able to treat specific compound interest tasks by means of logarithms.

Problems

10.1 Solve the exponential equations below without a calculator, i.e. find the solutions by guessing.
a) $\quad 2^{x}=16$
b) $\quad 4^{x}=64$
c) $\quad 5^{x}=1$
d) $\quad\left(\frac{3}{2}\right)^{x}=\frac{27}{8}$
e) $\quad 10^{\mathrm{x}}=1^{\prime} 000^{\prime} 000$
f) $\quad 10^{x}=10$
10.2 Determine the following logarithms without a calculator.
a) $\quad \log _{3}(27)$
b) $\quad \log _{4}(16)$
c) $\quad \log _{2}(128)$
d) $\quad \log _{10}(1000)$
e) $\quad \log _{10}(1)$
10.3 Determine the logarithms below with your calculator.
a) $\quad \log (1.1)$
b) $\quad \ln (1.1)$
c) $\quad \log (9)$
d) $\quad \ln (9)$
e) $\quad \log (2345.67)$
f) $\quad \ln (2345.67)$
10.4 Solve the following exponential equations.
a) $\quad 10^{x}=21$
b) $\quad 10^{\mathrm{x}}=256.78$
c) $\quad 10^{\mathrm{x}}=1^{\prime} 234^{\prime} 567$
10.5 Solve the exponential equations below.
a) $\quad 3^{x}=99$
b) $\quad 1.01^{\mathrm{x}}=1.5$
c) $\quad 3^{x+4}=5$
d) $\quad 5^{2 x-1}=12$
e) $\quad 0.2^{x-3}=27$
f) $\quad 1-e^{5 x}=0.3$
10.6 An initial capital C_{0} is invested at an interest rate r , compounded annually. After n years the capital amounts to C_{n}. Determine n .
a) $\quad \mathrm{C}_{0}=1000 \mathrm{CHF}$
$\mathrm{r}=1.00 \%$
$\mathrm{C}_{\mathrm{n}}=1220 \mathrm{CHF}$ (rounded)
b) $\quad \mathrm{C}_{0}=100^{\prime} 000 \mathrm{CHF}$
$\mathrm{r}=2.25 \%$
$\mathrm{C}_{\mathrm{n}}=243$ '519 CHF (rounded)
10.7 How long would $10^{\prime} 000$ CHF have to be invested at 2.5%, compounded annually, to amount to $12{ }^{\prime} 000 \mathrm{CHF}$?
10.8 How long would any initial capital have to be invested at 1.25%, compounded annually, to double its value?
10.9 An initial capital of $10^{\prime} 000.00 \mathrm{CHF}$ is invested at an unknown interest rate, compounded annually. After 10 years the capital amounts to $11^{\prime} 894.40 \mathrm{CHF}$. After how many years (from the beginning of the investment) will the capital be worth $15^{\prime} 000.00 \mathrm{CHF}$?
10.10 The sales decay for a product is given by

$$
S=50^{\prime} 000 e^{-0.8 x}
$$

where S is the monthly sales and x is the number of months that have passed since the end of a promotional campaign.
a) What will be the sales 4 months after the end of the campaign?
b) How many months after the end of the campaign will sales drop below 1000, if no new campaign is initiated?
10.11 The demand function for a certain commodity is given by

$$
\mathrm{p}=100 \mathrm{e}^{-\mathrm{q} / 2}
$$

If the price is $\$ 1.83$ per unit, how many units will be demanded, to the nearest unit?
10.12 On a college campus of $10^{\prime} 000$ students, a single student returned to campus infected by a disease. The spread of the disease through the student body is given by

$$
\mathrm{y}=\frac{10^{\prime} 000}{1+9999 \mathrm{e}^{-0.99 \mathrm{t}}}
$$

where y is the total number infected at time t (in days).
a) How many are infected after 4 days?
b) The school will shut down if 50% of the students are ill. During what day will it close?
10.13 Pollution levels in Lake Erie have been modelled by the equation

$$
x=0.05+0.18 e^{-0.38 t}
$$

where x is the volume of pollutants (in cubic kilometers) and t is the time (in years).
a) \quad Find the initial pollution level, i.e. find x when $\mathrm{t}=0$.
b) How long will it take the pollution level to reach 30% of the initial level?
10.14 * Suppose the supply of x units of a product at price p dollars per unit is given by

$$
\mathrm{p}=10+5 \ln (3 \mathrm{x}+1)
$$

How many units would be supplied when the price is $\$ 50$ each?

Answers

10.1
a) $x=4$
b) $\quad \mathrm{x}=3$
c) $\quad \mathrm{x}=0$
d) $x=3$
e) $x=6$
f) $x=1$
10.2 a) 3

Hint:

- The expression $\log _{3}(27)$ is the answer to the question " 3 to what power is equal to 27 ?"
b) 2
c) $\quad 7$
d) 3
e) 0
10.3
a) $0.041 \ldots$
b) 0.095...
c) 0.954 ...
d) 2.197...
e) $3.370 \ldots$
f) $7.760 \ldots$
$10.4 \quad$ a) $\quad \mathrm{x}=\log (21)=1.322 \ldots$
Hint:
- Apply $\log (\ldots)$ to both sides of the equation.
- Use the fact that $\log \left(10^{x}\right)=x$ for any $x \in \mathbb{R}$.
b) $\quad \mathrm{x}=\log (256.78)=2.409 \ldots$
c) $\mathrm{x}=\log \left(1^{\prime} 234^{\prime} 567\right)=6.091 \ldots$
10.5
a) $x=4.182 \ldots$
b) $\quad x=40.748 \ldots$
c) $\quad \mathrm{x}=-2.535 \ldots$

Hint:

- First solve the equation for $\mathrm{x}+4$.
d) $x=1.271 \ldots$
e) $\quad x=0.952 \ldots$
f) $x=-0.071 \ldots$
Hints:
- First solve for $e^{5 x}$.
- Then solve for 5 x .
$10.6 \quad \mathrm{n}=\frac{\log \left(\frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{C}_{0}}\right)}{\log (\mathrm{q})}$
a) $n=20$
b) $\quad \mathrm{n}=40$
$10.7 \mathrm{n}=\frac{\log \left(\frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{C}_{0}}\right)}{\log (\mathrm{q})}=\frac{\log \left(\frac{12000}{10000}\right)}{\log (1.025)}=7.38 \ldots \rightarrow 8$ years
$10.8 \quad C_{n}=C_{0} \cdot q^{n}$
$\mathrm{C}_{\mathrm{n}}=2 \cdot \mathrm{C}_{0}$
$\Rightarrow \quad \mathrm{n}=\frac{\log (2)}{\log (1.0125)}=55.79 \ldots \rightarrow 56$ years
$10.9 \quad \mathrm{r}=1.75 \%$
$\mathrm{C}_{\mathrm{n}}=14^{\prime} 000 \mathrm{CHF}$ for $\mathrm{n}=23.37 \ldots \rightarrow 24$ years
Hints:
- First determine the interest rate r by looking at the first 10 years (C_{0} and C_{10} are known, r is unknown).
- Then determinate $n\left(\mathrm{C}_{0}, \mathrm{C}_{\mathrm{n}}\right.$, and r are known, n is unknown).
$10.10 \quad$ a) $\quad S(4)=2038$
b) $\quad x=4.9$, i.e. after 4.9 months

Hints:

- Determine x such that $\mathrm{S}=1000$.
- The equation $1000=50^{\prime} 000 \mathrm{e}^{-0.8 \mathrm{x}}$ has to be solved for x .
- Use the fact that $\ln \left(\mathrm{e}^{\mathrm{x}}\right)=\mathrm{x}$ for any $\mathrm{x} \in \mathbb{R}$.
10.11
$q=8.0017 \ldots \rightarrow 8$ units
Hint:
- Use the same procedure as in 10.10 b).
10.12 a) $\mathrm{y}(4)=52.18 \ldots \rightarrow 52$ students
b) $\quad \mathrm{t}=9.30 \ldots \rightarrow$ the 10th day

Hint:

- The following equation hat to be solved for $\mathrm{t}: 5000=\frac{10^{\prime} 000}{1+9999 \mathrm{e}^{-0.99 \mathrm{t}}}$
10.13 a) $\mathrm{x}=0.23 \mathrm{~m}^{3}$
b) $\quad \mathrm{t}=5.91 \ldots \rightarrow 5.9$ years

Hint:

- Use the same procedure as in 10.12 b).
$10.14 * \mathrm{x}=993.31 \ldots \rightarrow 993$ units

