Exercises $3 \quad$ Function
 Domain, codomain, range, graph

Objectives

- understand what a function is.
- be able to judge whether a given relation is a function.
- be able to determine the range of a given function.
- be able to determine values of a given function.

Problems

3.1 Which of the following relations are functions? Explain your answer.
a)

b)

c)

d)

e) $\quad \mathrm{D}=$ set of all the modules of the HTW Tourism bachelor programme $\mathrm{B}=$ set of all the HTW lecturers
$\mathrm{f}: \mathrm{D} \rightarrow \mathrm{B}, \mathrm{m} \rightarrow l=\mathrm{f}(\mathrm{m})=$ lecturer of m
f) $\quad \mathrm{D}=\{1980,1981, \ldots, 1989,1990\}$
$\mathrm{B}=$ set of all the human beings aged between 20 and 30
f: $D \rightarrow B, y \rightarrow p=f(y)=$ person who was born in the year y
g) $\quad \mathrm{D}=$ set of all the human beings aged between 20 and 30
$B=\{1980,1981, \ldots, 1989,1990\}$
$f: D \rightarrow B, p \rightarrow y=f(p)=$ year of birth of person p
h) $\quad f: \mathbb{R} \rightarrow \mathbb{R}, x \rightarrow y=f(x)=x^{2}$
i) $\quad f: \mathbb{R}^{+} \rightarrow \mathbb{R}, x \rightarrow y=f(x)=$ number whose square is x
j) $\quad \mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}, \mathrm{t} \rightarrow \mathrm{b}=\mathrm{f}(\mathrm{t})=$ bank account balance at time t
3.2 Determine the range E of the functions below:
a) $\quad \mathrm{D}=\{$ January, February, March, ..., December $\}$
$\mathrm{B}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{Z}\}$
$\mathrm{f}: \mathrm{D} \rightarrow \mathrm{B}, \mathrm{m} \rightarrow l=\mathrm{f}(\mathrm{m})=$ initial letter of m
b) $\quad \mathrm{D}=$ set of all the neighbouring countries of Switzerland B $=$ set of all the European cities
c: $D \rightarrow B, x \rightarrow y=c(x)=$ capital of neighbouring country x
c) function f in problem 3.1 g)
d) function f in problem 3.1 h)
3.3 a) $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}, \mathrm{x} \rightarrow \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x}$

Determine the following values:
i) $\quad \mathrm{f}(1)$
ii)
f(-2)
iii) $\quad f(a)$
iv) $\quad f\left(b^{2}\right)$
v) $\quad f(a-b)$
vi) $\quad f\left(x^{3}-x\right)$
b) $\quad \mathrm{g}: \mathbb{R} \backslash\{-1\} \rightarrow \mathbb{R}, \mathrm{x} \rightarrow \mathrm{g}(\mathrm{x})=\frac{\mathrm{x}^{2}}{\mathrm{x}+1}$

Determine the following values:
i)
$\mathrm{g}(2)$
iv)
$g\left(b^{2}\right)$
ii)
$g(-3)$
$\mathrm{g}(\mathrm{a}-\mathrm{b})$
iii) $g(a)$
vi) $\quad g\left(\frac{x^{2}}{x+1}\right)$
3.4 The graph of a function f ist given as follows:

a) State the value of $f(-1)$.
b) Estimate the value of $f(2)$.
c) For what values of x is $f(x)=2$?
d) Estimate the values of x such that $\mathrm{f}(\mathrm{x})=0$.
e) State the domain D of f.
f) State the range E of f.

Answers

3.1 a
no function
b) function
c) no function
d) function
e) no function
f) no function
g) function
h) function
i) no function
j) function
3.2 a) $E=\{A, D, F, J, M, N, O, S\}$
b) $\quad \mathrm{E}=\{$ Berlin, Vienna, Vaduz, Rome, Paris $\}$
c) $\quad \mathrm{E}=\mathrm{B}$
d) $\quad \mathrm{E}=\mathbb{R}_{0}{ }^{+}$
3.3 a) i) $\mathrm{f}(1)=1^{3}-1=0$
ii) $\quad f(-2)=(-2)^{3}-(-2)=-6$
iii) $\quad f(a)=a^{3}-a$
iv) $\quad f\left(b^{2}\right)=\left(b^{2}\right)^{3}-b^{2}=b^{6}-b^{2}$
v) $\quad f(a-b)=(a-b)^{3}-(a-b)=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}-a-b$
vi) $\quad f\left(x^{3}-x\right)=\left(x^{3}-x\right)^{3}-\left(x^{3}-x\right)=x^{9}-3 x^{7}+3 x^{5}-2 x^{3}+x$
b) i) $\quad g(2)=\frac{2^{2}}{2+1}=\frac{4}{3}$
ii) $\quad \mathrm{g}(-3)=\frac{(-3)^{2}}{3+1}=\frac{9}{4}$
iii) $\quad g(a)=\frac{a^{2}}{a+1}$
iv) $g\left(b^{2}\right)=\frac{\left(b^{2}\right)^{2}}{b^{2}+1}=\frac{b^{4}}{b^{2}+1}$
v) $\quad g(a-b)=\frac{(a-b)^{2}}{(a-b)+1}=\frac{a^{2}-2 a b+b^{2}}{a-b+1}$
vi) $\quad g\left(\frac{x^{2}}{x+1}\right)=\frac{\left(\frac{x^{2}}{x+1}\right)^{2}}{\left(\frac{x^{2}}{x+1}\right)+1}=\frac{x^{4}}{x^{3}+x^{2}+x+1}$
3.4 a) $f(-1)=-2$
b) $\quad \mathrm{f}(2) \approx 2.8$
c) $\quad x_{1}=-3, x_{2}=1$
d) $x_{1} \approx-2.5, x_{2} \approx 0.3$
e) $\quad \mathrm{D}=\{\mathrm{x} \in \mathbb{R} \mid-3 \leq \mathrm{x} \leq 3\}=[-3,3]$
f) $\quad E=\{y \in \mathbb{R} \mid-2 \leq y \leq 3\}=[-2,3]$

