Exercises 3 Function Domain, codomain, range, graph

Objectives

- understand what a function is.
- be able to judge whether a given relation is a function.
- be able to determine the range of a given function.
- be able to determine values of a given function.

Problems

3.1 Which of the following relations are functions? Explain your answer.

a`

b)

c)

d)

- e) D = set of all the modules of the HTW Tourism bachelor programme
 - B = set of all the HTW lecturers
 - f: D \rightarrow B, m \rightarrow l = f(m) = lecturer of m
- f) D = {1980, 1981, ..., 1989, 1990}
 - B = set of all the human beings aged between 20 and 30
 - f: $D \rightarrow B$, $y \rightarrow p = f(y) = person who was born in the year y$
- g) D = set of all the human beings aged between 20 and 30
 - $B = \{1980, 1981, \dots, 1989, 1990\}$
 - f: $D \rightarrow B$, $p \rightarrow y = f(p) = year of birth of person p$
- h) f: $\mathbb{R} \to \mathbb{R}$, $x \to y = f(x) = x^2$
- i) f: $\mathbb{R}^+ \to \mathbb{R}$, $x \to y = f(x) =$ number whose square is x
- j) f: $\mathbb{R} \to \mathbb{R}$, $t \to b = f(t) = bank$ account balance at time t

- 3.2 Determine the range E of the functions below:
 - a) D = {January, February, March, ..., December} $B = \{A, B, C, ..., Z\}$ f: D \rightarrow B, m \rightarrow l = f(m) = initial letter of m
 - D = set of all the neighbouring countries of Switzerland b) B = set of all the European cities c: $D \rightarrow B$, $x \rightarrow y = c(x) = capital of neighbouring country x$
 - c) function f in problem 3.1 g)
 - d) function f in problem 3.1 h)
- f: $\mathbb{R} \to \mathbb{R}$, $x \to f(x) = x^3 x$ 3.3 a)

Determine the following values:

- $f(b^2)$
- f(-2)f(a - b)
- iii)
- f(a) $f(x^3 - x)$ vi)
- g: $\mathbb{R} \setminus \{-1\} \to \mathbb{R}$, $x \to g(x) = \frac{x^2}{x+1}$ b)

Determine the following values:

- i) g(2)
- g(-3)
- iii)

- $g(b^2)$ iv)
- v) g(a - b)
- vi)
- 3.4 The graph of a function f ist given as follows:

- State the value of f(-1). a)
- b) Estimate the value of f(2).
- c) For what values of x is f(x) = 2?
- d) Estimate the values of x such that f(x) = 0.
- State the domain D of f. e)
- f) State the range E of f.

Answers

- 3.1 no function a)
 - b) function
 - no function c)
 - d) function
 - e) no function
 - f) no function
 - function g)
 - h) function
 - i) no function
 - j) function
- 3.2 $E = {A, D, F, J, M, N, O, S}$
 - b) E = {Berlin, Vienna, Vaduz, Rome, Paris}
 - c) E = B
 - $E = \mathbb{R}_{0}^{+}$ d)
- 3.3 a) i)
 - ii)
 - iii)
- $f(1) = 1^3 1 = 0$ $f(-2) = (-2)^3 (-2) = -6$ $f(a) = a^3 a$ $f(b^2) = (b^2)^3 b^2 = b^6 b^2$ iv)
 - $f(a b) = (a b)^3 (a b) = a^3 3a^2b + 3ab^2 b^3 a b$ v)
 - $f(x^3-x)=(x^3-x)^3-(x^3-x)=x^9-3x^7+3x^5-2x^3+x$ vi)
 - $g(2) = \frac{2^2}{2+1} = \frac{4}{3}$ $g(-3) = \frac{(-3)^2}{3+1} = \frac{9}{4}$ $g(a) = \frac{a^2}{a+1}$ b)

 - $g(b^{2}) = \frac{(b^{2})^{2}}{b^{2}+1} = \frac{b^{4}}{b^{2}+1}$ $g(a-b) = \frac{(a-b)^{2}}{(a-b)+1} = \frac{a^{2}-2ab+b^{2}}{a-b+1}$
 - $g\left(\frac{x^2}{x+1}\right) = \frac{\left(\frac{x^2}{x+1}\right)^2}{\left(\frac{x^2}{x+1}\right)+1} = \frac{x^4}{x^3+x^2+x+1}$
- f(-1) = -23.4
 - $f(2) \approx 2.8$ b)
 - $x_1 = -3, x_2 = 1$ c)
 - $x_1 \approx -2.5$, $x_2 \approx 0.3$
 - $D = \{x \in \mathbb{R} \mid -3 \le x \le 3\} = [-3,3]$ e)
 - $E = \{y \in \mathbb{R} \mid -2 \le y \le 3\} = [-2,3]$ f)