Exercises 1
 Sets
 Intersection, complement, union, number sets

Objectives

- understand what a set, an element of a set, an intersection, a union, a complement is.
- know the set of real numbers, rational numbers, integers, natural numbers.
- be able to perform basic set operations.

Problems

1.1 Look at the sets A, B, and C:

A = Set of all the cities of the world
B $=$ Set of all the European cities
C $=$ Set of all the coastal cities of the world
Find at least four elements of the following sets:
a) $\quad \mathrm{B} \cap \mathrm{C}$
b) $\quad \mathrm{B} \backslash \mathrm{C}$
c) $\quad \mathrm{C} \backslash \mathrm{B}$
d) $\quad \mathrm{A} \backslash(\mathrm{B} \cup \mathrm{C})$
1.2 When calculating we usually deal with real numbers. The set \mathbb{R} of real numbers can be thought of as an infinitely long continuous number line. Each point of the number line represents a real number x:

The following number sets are subsets of \mathbb{R} :

$$
\begin{aligned}
& \mathbb{N}=\text { Set of natural numbers }=\{1,2,3,4, \ldots\} \\
& \mathbb{Z}=\text { Set of integers }=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\} \\
& \mathbb{Q}=\text { Set of rational numbers }=\left\{x \left\lvert\, x=\frac{m}{n}\right. ; m \in \mathbb{Z} ; n \in \mathbb{Z} ; n \in \mathbb{Z} \backslash\{0\}\right\}
\end{aligned}
$$

A rational number x is a number that can be expressed as a fraction $\frac{m}{n}$, where both numerator m and denominator n are integers and n is not zero.
a) Determine the following sets:
i) $\quad \mathbb{Z} \backslash \mathbb{N}$
ii) $\mathbb{Z} \cup \mathbb{N}$
iii) $\quad \mathbb{Z} \cap \mathbb{N}$
b) Decide whether each statement is true or false:
i) $\quad \mathbb{N} \subset \mathbb{Z}$
ii) $\quad \mathbb{Z} \subset \mathbb{Q}$
iii) $\quad \mathbb{Q} \subset \mathbb{R}$
c) * Try to think of numbers that are elements of the set $\mathbb{R} \backslash \mathbb{Q}$
1.3 Harshbarger/Reynolds: Exercises 0.1, pages 6 to 9 (photocopies)
(Harshbarger, R.J. and Reynolds, J.J.: Mathematical Applications for the Management, Life, and Social
Sciences, Houghton Mifflin Company, Boston / New York 2007, 8th edition, ISBN 978-0-618-73162-6)

Answers

1.1 a) $\mathrm{B} \cap \mathrm{C}=\{$ Lisbon, Copenhagen, Barcelona, Naples, Stockholm, ...\}
b) $\quad \mathrm{B} \backslash \mathrm{C}=\{$ London, Paris, Madrid, Berlin, Rome, $\ldots\}$
c) $\quad \mathrm{C} \backslash \mathrm{B}=\{$ Tokyo, San Francisco, Sydney, Rio de Janeiro, ... $\}$
d) $\mathrm{A} \backslash(\mathrm{B} \cup \mathrm{C})=\{$ Chicago, Mexico City, Nairobi, Beijing, $\ldots\}$
1.2
a) i) $\quad \mathbb{Z} \backslash \mathbb{N}=\{0,-1,-2,-3, \ldots\}$
ii) $\quad \mathbb{Z} \cup \mathbb{N}=\mathbb{Z}$
iii) $\quad \mathbb{Z} \cap \mathbb{N}=\mathbb{N}$
b) i) true
ii) true
iii) true
c) * $\quad \mathbb{R} \backslash \mathbb{Q}=\{\sqrt{2}, \sqrt{3}, \pi, \ldots\}$
1.3 see Harshbarger/Reynolds (photocopies)

