Equations

An equation consists of two terms which are connected with an equality sign.

Ex.:
$$7x - 3 = 12x - 38$$

equation
$$2(7x - 3) + 5x$$

no equation

A **solution** of an equation in one **variable** is a number that, when substituted for the variable, satisfies the equation, i.e. forms a true statement.

A solution of an equation in two ore more variables is a set of numbers that, when substituted for the variables, satisfies the equation, i.e. forms a true statement.

Ex.: 2x + 4 = 10

This equation has exactly one solution: x = 3

Ex.: x = x + 1

This equation has no solution.

Ex.: $y^2 - 1 = 3$

This equation has two solutions: $y_1 = 2$

 $y_2 = -2$

Ex.: $\sqrt{x-1} + y = 2$

This equation has infinitely many solutions: $(x,y)_1 = (2,1)$

 $(x,y)_2 = (5,0)$

 $(x,y)_3 = (10,-1)$

etc

The set of all the solutions of an equation is the solution set S.

Ex.: 2x + 4 = 10 $S = \{3\}$

Ex.: x = x + 1 $S = \{ \}$

Ex.: $y^2 - 1 = 3$ $S = \{ 2, -2 \}$

Ex.: $\sqrt{x-1} + y = 2$ $S = \{ (2,1), (5,0), (10,-1), \dots \}$

Two equations with the same solution set are **equivalent**.

Ex.:
$$2x + 4 = 10$$

 $x + 1 = 4$

These two equations have the same solution set $S = \{3\}$.

They are therefore equivalent.

Solving an equation

Solving an equation means rearranging the equation to the form "variable = ..." by applying one or more **equivalence operations**.

```
Ex.:
          2x + 4 = 10
                                                                           |-4
          2x = 6
                                                                          |:2
          x = 3
               S = \{3\}
          (x+2)(x-3) - 3(2x-3) = (x-6)^2 + 2
Ex.:
                                                                           expanding
          (x^2 - x - 6) - (6x - 9) = (x^2 - 12x + 36) + 2
x^2 - x - 6 - 6x + 9 = x^2 - 12x + 36 + 2
x^2 - 7x + 3 = x^2 - 12x + 38
                                                                           | dissolving brackets
                                                                           | simplifying
                                                                           -x^2
          -7x + 3 = -12x + 38
                                                                           | + 12x
          5x + 3 = 38
                                                                           | - 3
          5x = 35
                                                                           |:5
          x = 7
               S = \{7\}
```

Equivalence operations

The following operations transform an equation into an equivalent equation. The new equation has therefore the same solution set as the original equation.

- Addition of an arbitrary number to both sides of the equation
- Subtraction of an arbitrary number from both sides of the equation
- Multiplication of both sides of the equation by an arbitrary number 0
- **Division** of both sides of the equation by an **arbitrary number** 0

- ..

Systems of equations

A system of equations consists of two or more equations.

Ex.:
$$2x + y = 5$$

$$x + 2y = 4$$
System of 2 equations in 2 variables (x und y)

Ex.:
$$3p - 2r + 4s - t = 0$$

$$p^{2} + q^{2} = 1$$

$$p + q = r - s$$
System of 3 equations in 5 variables (p, q, r, s, t)

A solution of a system of equations is a set of numbers that, when substituted for the variables, satisfies each equation.

Ex.:
$$2x + y = 5$$
 I $x + 2y = 4$ II

Equation I has infinitely many solutions:

$$(x,y)_1 = (0,5)$$

 $(x,y)_2 = (1,3)$
 $(x,y)_3 = (2,1)$
 $(x,y)_4 = (3,-1)$
 $(x,y)_5 = (4,-3)$
etc.

Equation II has infinitely many solutions, too:

$$(x,y)_1 = (-2,3)$$

 $(x,y)_2 = (0,2)$
 $(x,y)_3 = (2,1)$
 $(x,y)_4 = (4,0)$
 $(x,y)_5 = (6,-1)$
etc.

Only the set (x,y) = (2,1) satisfies both equation I and equation II.

Therefore, the system of equations has exactly one solution:

$$(x,y) = (2,1)$$

Solving a system of equations

1. Operations

• **Equivalence operation** applied to one single equation (see "Solving an equation" above)

An equivalence operation does not change the solution set of a single equation.

Ex.:
$$2x + y = 5$$
 | $\cdot 2$
 $4x + 2y = 10$

Both equations have the same solutions

$$(x,y)_1 = (0,5)$$

 $(x,y)_2 = (1,3)$
 $(x,y)_3 = (2,1)$
 $(x,y)_4 = (3,-1)$
 $(x,y)_5 = (4,-3)$
etc.

Addition of two equations of the system of equations

Two equations of a system of equations can be transformed into one single equation by adding both the left hand sides and the right hand sides of the equations. The solutions of the new equation contain sets of numbers that are solutions of both of the two original equations (without proof).

Ex.:
$$2x + y = 5$$
 I
 $x + 2y = 4$ II

Adding both the left hand sides and the right hand sides of the two equations yields a new equation

$$3x + 3y = 9$$
 II

Equation III has the solutions

$$(x,y)_1 = (0,3)$$

 $(x,y)_2 = (1,2)$
 $(x,y)_3 = (2,1)$
 $(x,y)_4 = (3,0)$

These solutions contain the set (x,y) = (2,1) which is a solution of both of the original equations I and II.

2. Strategy for solving a system of n equations in n variables

Both the number of equations and the number of variables can be reduced by applying appropriate operations (see 1. above) to the system of equations:

```
System of n equations in n variables
System of (n-1) equations in (n-1) variables
System of (n-2) equations in (n-2) variables
...
System of 2 equations in 2 variables
1 equation in 1 variable
```

3. Solving a linear system of equations

Addition method

Ex.:
$$4x + 7y = -16$$
 I $7x - 3y = 33$ II

(2 equations in 2 variables)

Finding appropriate multiples of both I and II

Adding III and IV and solving for x

x = 3

Substituting 3 for x in I and solving for y

$$4.3 + 7y = -16$$
 | - 12
 $7y = -28$ | : 7
 $y = -4$

Equation method

Ex.:
$$4x + 7y = -16$$
 I $7x - 3y = 33$ II

(2 equations in 2 variables)

Solving I for x

$$4x + 7y = -16$$
 | $-7y$
 $4x = -7y - 16$ | : 4
 $x = \frac{-7y - 16}{4}$ III

Solving II for x

$$7x - 3y = 33$$
 | + 3y
 $7x = 3y + 33$ | : 7
 $x = \frac{3y + 33}{7}$ IV

Equating expressions for x in III und IV and solving for y

$$\frac{-7y - 16}{4} = \frac{3y + 33}{7}$$
 | \cdot 28 (1 equation in 1 variable)

$$7(-7y - 16) = 4(3y + 33)$$

 $-49y - 112 = 12y + 132$ | + 49y | - 132
 $61y = -244$ | : 61
 $y = -4$

Substituting -4 for y in III

$$x = \frac{-7(-4) - 16}{4} = 3$$

$$(x,y) = (3,-4)$$

Substitution method

Ex.:
$$4x + 7y = -16$$
 I $7x - 3y = 33$ II

(2 equations in 2 variables)

Solving I for x

$$4x + 7y = -16$$
 | - 7y
 $4x = -7y - 16$ | : 4
 $x = \frac{-7y - 16}{4}$ III

Substituting the value of x for x in II and solving for y

$$7\frac{-7y - 16}{4} - 3y = 33$$

(1 equation in 1 variable)

$$7(-7y - 16) - 12 y = 132$$
 $-49y - 112 - 12y = 132$
 $-61y - 112 = 132$ | + 112
 $-61y = 244$ | : (-61)

Substituting -4 for y in III

$$x = \frac{-7(-4) - 16}{4} = 3$$

$$(x,y) = (3,-4)$$